MASTER OF MATHEMATICS

COURSE OUTCOMES

SEMESTER I

ALGEBRA	CATEGORY	L	Р	CREDIT
	CORE	72	-	4

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	gain deep knowledge about various algebraic structures.	K ₁
CO2	understand the concepts from simple groups to extension field.	K ₂
CO3	apply the algebraic methods for solving problems.	K ₃
CO4	recognize some advanced results of the theory of groups, rings & fields.	K4
CO5	state and prove the various algebraic structures.	K5

REAL	CATEGORY	L	Р	CREDIT
ANALYSIS	CORE	72	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define and recognize the series of real numbers and convergence and define the basic terms under uniform convergence, linear transformation, Lebesgue measure and Lebesgue integral	K ₁ & K ₂
CO2	analyze and apply the concepts of convergence criteria, linear transformation, Lebesgue measure and Lebesgue integral	K4 & K3
CO3	prove the theorems in Riemann Stieltjes integral, Uniform convergence, Linear transformation, Lebesgue measure and Lebesgue integral	K ₃ & K ₅

ORDINARY	CATEGORY	L	Р	CREDIT
DIFFEENTIAL	CORE	72	-	4
EQUATIONS				

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define ordinary point, Legendre equation, Bessel	K1
	equation, Fundamental matrix, Picard's theorem and	
	oscillations of solutions.	
CO2	understand the existence ,uniqueness of solutions of	K ₂
	systems of linear differential equations & Non-	
	linear initial value problems.	
CO3	identify the results in systems of linear differential	K3
	equations & Non- linear initial value problems.	
CO4	examine the solutions of systems of linear	K4
	differential equations and Non- linear initial value	
	problems . Analyze the oscillations of solutions of	
	second order differential equations.	
CO5	apply power series method and successive	K5
	approximation method to evaluate the solutions of	
	systems of linear differential equations and Non-	
	linear initial value problems.	

NUMERICAL	CATEGORY	L	Р	CREDIT
METHODS	CORE	72	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the concept of numerical differentiation,	K ₂ & K ₄
	integration, solution of system of both ordinary and	
	partial differential equations and the difference	
	between the boundary value and characteristic value	
	problems.	
CO2	remember the formulae for central difference	K1
	formulae, numerical differentiation, integration and	
	also write the formulae for various methods.	
CO3	identify the numerical results of both ordinary and	K3
	partial differential equations by using various	
	methods.	
CO4	learn how to solve the problems numerically by using	K ₂ & K ₅
	direct, indirect methods, single step and multistep	
	methods and also the problems based on non linear	
	equations.	

LATEX	CATEGORY	L	Р	CREDIT
	ELECTIVE	48	-	2

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	learn the history of LaTex and understand the	K ₁ & K ₂
	basics of a LaTex .	
CO2	apply LaTex concepts in creating tables and drawing	K ₃
	pictures.	
CO3	analyze the concepts of LaTex to write programs.	K4
CO4	determine the LaTex commands.	K5

CRYPTOGRAPHY	CATEGORY	L	Р	CREDIT
	ELECTIVE	72	-	4

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the fundamentals of cryptography.	K ₁ & K ₂
CO2	apply the basic concepts and algorithm of number theory to understand the design of DES and other cryptographic algorithms.	K3&K2
CO3	design security application in the field of information technology.	K 5
CO4	analyze the security issues in the network and resolve it.	K ₃ &K ₅
CO5	Gain the knowledge about public key cryptography	K1

<mark>SEMESTER II</mark>

COMPLEX	CATEGORY	L	Р	CREDIT
ANALYSIS	CORE	72	-	4

Course Outcomes

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define analytic function, complex integration, Residues, Taylor Series, Laurent Series and mappings.	K ₁ & K ₂
CO2	apply Cauchy's theorem, Taylor's Theorem, Residue Theorem, Weierstrass Theorem, Riemann Mapping Theorem for the analytic function.	K3
CO3	analyze singularities and power series expansion.	K4
CO4	evaluate integrals along a path in the complex plane, branch points.	K 5

PARTIAL	CATEGORY	L	Р	CREDIT
DIFFERENTIAL	CORE	72	-	4
EQUATIONS				

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	gain the knowledge in hyperbolic, parabolic, elliptic	K ₁
	type partial differential equations, method of	
	separation of variables, initial and boundary value	
	problems, Green's function.	
CO2	understand the classification of second order partial	K ₂
	differential equations, D'Alembert's solution,	
	existence and uniqueness of solutions, method of	
	images.	
CO3	apply the methods of separation of variables and	K ₃
	methods of green's function to evaluate initial and	
	boundary value problems.	
CO4	classify second order partial differential equations	K4
	and analyze the solutions of initial and boundary	
	value problems.	
CO5	construct the solutions of second order partial	K5
	differential equations.	

MECHANICS	CATEGORY	L	Р	CREDIT
	CORE	72	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the notions of configuration space,	K ₁ & K ₂
	generalised coordinates, canonical transformations	
	and phase space in mechanics.	
CO2	analyze the Euler-Lagrange equations from a	K4
	variational principle and Hamiltonian formulation of	
	a mechanical system	
CO3	apply theoretical techniques including variational	K3 & K4
	principles & Hamilton Jacobi Theory and also to	
	apply these techniques to analyze elementary	
	mechanical systems.	
CO4	evaluate the cause of linear, rotational and rolling	K5
	motions, by describing torques, work and energy,	
	impulse and momentum associated with objects	
	undergoing each type of motion.	

CORE IX: OPTIMIZATION TECHNIQUES

OPTIMIZATION	CATEGORY	L	Р	CREDIT
TECHNIQUES	CORE	60	-	4

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the mathematical tools that are needed to	K ₂
	solve optimization problems.	
CO2	learn how to solve the transportation	K3, K4 & K5
	problems by using various techniques and to	
	find the shortest path for Network	
	scheduling.	
	introduce the use of basic methodology for	
	the solution of linear programs and integer	
	programs.	
	➢ introduce the advanced methods for large-	
	scale transportation and assignment	
	problems.	
CO3	define the basic terms under transportation problems,	K ₁
	Network sheduling and probability.	

DIFFERENTIAL	CATEGORY	L	Р	CREDIT
GEOMETRY	ELECTIVE	60	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	evaluate problems by using the different types in	K 5
	binomial series.	
CO2	gain the knowledge about the concept of sequence	K ₁ & K ₂
	and series.	
CO3	identify the process of convergence and divergence	K4
	through different types of test.	
CO4	learn how to use reciprocals and transformations to	K ₂
	solve equations.	
CO5	evaluate the problems by using Newton's and	K5
	Horner's method.	

NEURAL	CATEGORY	L	Р	CREDIT
NETWORKS	ELECTIVE	60	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	analyze the difference between Hamming Network and Hopfield Network.	K4
CO2	gain the knowledge about the concept of Quadratic functions and conjugate gradient.	K ₁ & K ₂
CO3	apply Taylor series to solve different types of problems.	K3
CO4	learn the concepts of Multilayer Perceptrons.	K ₂
CO5	evaluate the problems by using Back propagation Algorithm .	K 5

CYBER	CATEGORY	L	Р	CREDIT
SECURITY	SKILL	24	-	2
	ENHANCEMENT			
	COURSE			

CO		Knowledge Level
Number	CO Statement	
CO1	understand the basic concepts of information security and	K ₁
	its types	
CO2	obtaining the knowledge thoroughly on cyber security	K ₁
	and its principles	
CO3	deals with risk management and threats	K ₁ & K ₂
CO4	gain detailed knowledge on security issues in social	K3 & K4
	media	
CO5	apply and work with cyber security applications in real	K5 & K6
	world	

<mark>SEMESTER III</mark>

CATEGORY	COURSE	TITLE OF THE	С	P	CREDIT
	CODE	COURSE			
CORE	17MAP15	TOPOLOGY	84	-	5

Course Outcomes

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the axioms of topological space, connected space, countability, separation, completely regular space, complete metric space.	K 1
CO2	Define and recognize the properties of general topological space, continuous function, metric space,compactness.	K ₁ & K ₂
СОЗ	Apply the concepts of urysohn lemma, urysohn metrization theorem, the tychonoff theorem and ascoli's theorem in topological spaces.	K3
CO4	Analyze the separation properties, convergent sequence, metric space in the general theory of topological space	K4
CO5	prove the theorems in Topological space, connectedness and compactness, countability and separation axioms, completely regular space and complete metric.	K ₃ & K ₅

CATEGORY	COURSE	TITLE OF THE	С	P	CREDIT
	CODE	COURSE			
CORE	17MAP16	THEORY OF NUMBERS	72	-	5

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	gain the knowledge in theory of numbers	K1
CO2	understand the concepts of Congruences, Quadratic reciprocity and Arithmetic functions.	K ₂
CO3	analyze and solve the problems by using Congruence formula	K4 &K5
CO4	apply Quadratic reciprocity law to solve the problems	K3&K5
CO5	evaluate the solutions of congruences of higher degree	K5

CATEGORY	COURSE	TITLE OF THE	С	Р	CREDIT
	CODE	COURSE			
CORE	17MAP15	MATHEMATICAL	84	-	5
		STATISTICS			

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define the concepts based on probability.	K ₁
CO2	analyze the various kinds of distribution functions.	K4
CO3	gain the knowledge about the different types of density functions.	K2
CO4	apply the concepts based of moment – generating functions to find the moments.	K ₃
CO5	evaluate the problems based on Uniform, Bernoulli, Binomial, Uniform, Exponential and Chi-Square Distributions.	K5

CATEGORY	COURSE	TITLE OF THE	C	Р	CREDIT
	CODE	COURSE			
PROFICIENCY	17PEP01	INDUSTRIAL	-	-	2
ENHANCEMENT		MATHEMATICS			
(SELF STUDY)					

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the meaning, purpose, and tools of operations research.	K ₂
CO2	gain the knowledge about simulation, Inventory control and Numerical Methods.	K ₁
CO3	apply the concepts of Inventories to find EOQ.	K ₃
CO4	Analyze the concept of Interpolation with equal and unequal integrals and find the solution to the problems by using various methods.	K _{2 &} K ₄
CO5	evaluate the problems based on types of inventory control.	K 5

CATEGORY	COURSE	TITLE OF THE	C	P	CREDIT
	CODE	COURSE			
ELECTIVE	17MAP20A	GRAPH THEORY	60	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the basic concepts of graph theory.	K ₁
CO2	gain the knowledge about graph and types of graph.	K ₂
CO3	apply the concepts in Euler tours and Hamiltonian cycles.	K ₃
CO4	analyze the Matching and Independent sets.	K ₃ & K ₄
CO5	Evaluate the Colouring.	K 5

CATEGORY	COURSE	TITLE OF THE	C	P	CREDIT
	CODE	COURSE			
ELECTIVE	17MAP20B	PROGRAMMING	60	-	4
		IN C++			

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	use the basic object-oriented design principles in computer problem solving and understand the basic concepts of oop, functions in C++, C++ streams, specifications about the class, Defining operator overloading, types of inheritances.	K _{1&} K ₅
CO2	learn the characteristics of an object-oriented programming language: data abstraction and information hiding, inheritance, and dynamic binding of the messages to the methods.	K _{2&} K ₄
СОЗ	learn how to design and implement generic classes with C++ templates.	K ₄
CO4	apply overloading of operators in C++ .	K ₃
CO5	write the programs by using the concepts of C++	K5

<mark>SEMESTER IV</mark>

CATEGORY	COURSE	TITLE OF THE	C	P	CREDIT
	CODE	COURSE			
CORE	17MAP22	FUNCTIONAL	72	-	5
		ANALYSIS			

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the basic concept of Banach spaces, Continuous linear functional, Bounded linear operator, Hilbert spaces and operators.	K1
CO2	define banach space, Hilbert space and the conjugate of an operator.	K _{1 &} K ₂
CO3	apply the knowledge of functional analysis to solve mathematical problems.	K ₃ & K ₅
CO4	analyze some basic properties by using metric spaces, normed linear space, parallelogram law, orthogonal complements, the adjoint operators, projection theorem.	K 4
CO5	establish the weak and weak* topology, complete orthogonal set, complete orthonormal set adjoint operators and projection operators.	K5

CATEGORY	COURSE	TITLE OF THE	С	Р	CREDIT
	CODE	COURSE			
CORE	17MAP23	MATHEMATICAL	84	-	6
		METHODS			

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define the concepts based on Fourier Sine and	K1
	Cosine transforms, Hankel transforms, Various types	
	of integral equations and Calculus of Variations.	
CO2	analyze and apply the Fourier Transforms in Laplace	K4 & K3
	Equation and also apply the integral equations in	
	ordinary differential equations	
CO3	gain the knowledge about the properties of Fourier	K ₂
	and Hankel Transforms.	
CO4	learn and analyze the concepts of Fredhlom Integral	K ₂ & K ₄
	Equation and Volterra Integral equation, Calculus of	
	Variation.	
CO5	evaluate the problems based on Fourier Cosine and	K5
	sine Transforms, Axisymmetric Dirichlet problems,	
	Euler's Eqaution and Fredhlom Integral Equation	
	and Volterra Integral equations.	

CATEGORY	COURSE CODE	TITLE OF THE COURSE	С	Р	CREDIT
CORE	17MAP24	FLUID DYNAMICS	72	-	5

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	define the concepts based on compressible and incompressible flow, stream lines ,path lines, velocity, density and pressure, source and sink, vortex.	K ₁
CO2	analyze and apply the concepts of fluid dynamics in momentum theorem, Blasius theorem and Navier Strokes equations.	K4 & K3
CO3	gain the knowledge about vorticity and circulation in various fluid, conservative forces and boundary layer equations.	K ₂
CO4	learn and analyze the concepts based on displacement thickness, momentum thickness and kinetic energy thickness.	K ₂ & K ₄
CO5	evaluate the problems based on stream lines, path lines in two – dimensional motion.	K5

CATEGORY	COURSE	TITLE OF THE	С	P	CREDIT
	CODE	COURSE			
ELECTIVE	17MAP28A	FUZZY LOGIC AND FUZZY SETS	60	-	4

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	gain the knowledge about	K ₁ & K ₂
	fundamentals of fuzzy set theory with	
	fuzzy logic.	
CO2	apply the concepts of fuzzy sets in	K3
	fuzzy relations.	
CO3	analyze the fuzzy measures.	K ₃
CO4	evaluate the fuzzy logic in various	K4
	types of uncertainity	
CO5	evaluate their relation to information	K 5
	and complexity.	

CATEGORY	COURSE	TITLE OF THE	С	P	CREDIT
	CODE	COURSE			
ELECTIVE	17MAP28B	CONTROL	60	-	4
		THEORY			

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the mathematical tools that are needed to solve differential equations.	K ₂
CO2	gain the knowledge about research methodology.	K ₁
CO3	identify the differential equation models to the real system.	K4
CO4	learn how to use the various techniques of control systems.	K _{2 &} K ₃
CO5	evaluate the different types of equations to solve real life problems.	K5

SYLLABUS FOR CORE OPTIONAL COURSE OFFERED

BY DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES FOR OPTIONAL COURSES

CATEGORY	COURSE	TITLE OF THE	C	P	CREDIT
	CODE	COURSE			
CORE	***	STATISTICAL	36	-	3
OPTIONAL		METHODS			

Course Outcomes

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	gain knowledge about measures of central tendency, correlation and regression, time Series and probability.	K ₁ & K ₂
CO2	apply statistical methods for estimating trend on time series, measures of central tendency.	K ₃
CO3	analyze the concept of probability under addition and multiplication theorems and apply the same.	K4
CO4	analyze the method of correlation and regression.	K4
CO5	evaluate the simple problems based on measures of central tendency, correlation and regression, probability addition and multiplication theorems.	K5

SYLLABUS FOR ALLIED COURSES

P.K.R ARTS COLLEGE FOR WOMEN (Accredited with 'A' Grade by NAAC) An Autonomous Institution-Affiliated to Bharathiar University MCA DEGREE PROGRAMME I SEMESTER

OPERATIONS	CATEGORY	L	Р	CREDIT
RESEARCH	ALLIED	48	-	3

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Understand the concepts of formulation of an L.P.P,	K ₁ & K ₂
	Construction of network, Costs involved in inventory	
CO2	Analyze various methods to solve L.P.P	K ₃ & K ₅
CO3	Learn and Apply algorithms to solve L.P.P	K ₂ & K ₃
CO4	Evaluate the network scheduling, EOQ problem,	K5
	Linear programming problem	
CO5	Analyze Replacement policy and to evaluate	K3 & K5
	Replacement problem.	