P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS),

(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476

DEPARTMENT OF PHYSICS

MASTER OF SCIENCE

BOARD OF STUDIES

For the candidates admitted from the Academic Year

2021-2022 and onwards

Under CBCS PATTERN

DEPARTMENT VISION

To become a centre of excellence in Physics by providing learning through experiments, workshops and seminars to students and scholars and encourage them to engage in basic and applied research

DEPARTMENT MISSION

To impart quality and science based education to rural women and empower them to become good scientists and committed individuals to the task of building a strong nation

PROGRAMME EDUCATIONAL OUTCOMES (PEOs)

The graduates will be able

- 1. To provide value-based quality education with theoretical and applied skills for rural women.
- 2. To facilitate personality development opportunities for students to face life's challenges in today's competitive scenario.
- 3. To empower rural women and make them economically independent through employability and entrepreneurship.
- 4. To awaken social consciousness of the students through community engagement for active contribution to the society.
- 5. To equip the students to become morally, ethically and socially responsible for building a strong nation.

PROGRAMME OUTCOMES (POs)

After the completion of B.Sc., programme the students will be able to:

- 1. **Disciplinary knowledge**: Demonstrate critical and systematic proficiency about the breadth and depth of the basic and emerging trends in the arts and science streams appropriate to the programme.
- 2. Communication skills: Communicate ideas clearly and effectively through verbal and non-verbal forms to specialist and non-specialist audiences with professionalism and multi-disciplinary approach.

- 3. Critical thinking, problem solving and analytical reasoning: Apply appropriate knowledge and skills to identify, formulate, critically analyse and substantially conclude with simple solutions to problems.
- 4. **Research skills and reflective thinking:** Explore real-time scenarios, analyse and interpret data and information, articulate and support findings with evidences incorporating economic and business practices to reach valid conclusion.
- 5. Teamwork and Leadership skills for interpersonal competence: Ability to interact, communicate and collaborate in a trans-disciplinary context.
- 6. **Continuous autonomous learning and digital literacy:** Ability to find, evaluate and compose clear information for self-directed learning through conventional and digital media.
- 7. Social consciousness with concern for environment: Capability to synthesise the economic, legal, social, environment, health, safety and cultural dimensions of the societywith moral and ethical reasoning and promote equity through sustainable development practices.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After the completion of B.Sc., Physics programme the students will be able to:

1. Disciplinary knowledge: demonstrate the fundamental concepts and principles of Physical

Sciences such as Mechanics, Head and Thermodynamics, Optics, Mathematical Physics,

Properties of Matter, Electronics, Electricity & Magnetism, Environmental issues related to

Physics

2. Communication Skills: organize and deliver the knowledge and skillseffectively,

efficiently through written, verbal, graphical/virtual modes and interact productively with

people from diverse background

- **3. Critical thinking, problem solving and analytical reasoning:** develop proficiency in the analysis of complex physical problems and the use of physical, mathematical and computational techniques to solve them
- **4. Research skills and reflective thinking:** improve aptitude skills, reasoning ability, undertake mini projects in order to qualify various state level and national level career

competitive examinations

- **5. Teamwork and Leadership skills for interpersonal competence:** build the ability to work in a team to solve the problems related to Physics
- **6. Continuous autonomous learning and digital literacy:** use ICT and other related resources for life-long learning
- **7. Social consciousness with concern for environment:** realize, develop and understand the value of Physics and Science for contribution to the betterment of the Society

PG COURSE STRUCTURE CBCS – 2021-2022

PART	CATEGORY	NO. OF COURSES	TOTAL CREDITS	PROPOSED SEMESTER		
	Core: Theory 13					
	Core: Practical	4				
	Core: Elective	3				
III	Core: Open Elective 1		27	92	I - IV	
	Core: Self study 4					
	Core: Industrial / Institution Training					
	Core: Project	1				
IV	Ability Enhancement Cours	e	1	2	II	
v	Proficiency Enhancement: Self Study Course	1	3	6	H IV	
•	Competency Enhancement: Certificate 2 Course		5	0	II-IV	
	Т	otal	29	100		

P.K.R ARTS COLLEGE FOR WOMEN (Autonomous) GOBICHETTIPALAYAM – 638476.

MASTER OF SCIENCE - PHYSICS

Course Scheme and Scheme of Examinations

(For students admitted from 2021-22 & onwards)

Scholastic Courses:

Part	Category	Course	Title of the Course	Contact Hrs/ week	Exam Duration hrs.	N	/lax.Mar	ks	Credits	
Å	Category	Code The of the Course T		Contact]	Exam I h	CIA	ESE	Total	Cre	
SEMESTER – I										
III	Core: I	21PHP01	Classical Mechanics	5	3	50	50	100	4	
III	Core :II	21PHP02	Mathematical Physics	5	3	50	50	100	4	
III	Core : III	21PHP03	Quantum Mechanics - I	5	3	50	50	100	4	
III	Core : IV	21PHP04	Numerical Methods & MATLAB	5	3	50	50	100	4	
III	Core :V	21PHP05	Comprehension in Physics –I (MCQ from Part –III courses / Online exam)		2		100	100	1	
III	Core : VI	21PHP06	Advanced Physics Practical-I	3	-	-	-	-	-	
III	Core : VII	21PHP07	General Electronics Practical-I	3	-	-	-	-	-	
III	Elective:I	121PHP08A / 21PHP08B	Essentials of Nanoscience / Radiation Physics	4	3	50	50	100	4	
			TOTAL	30				600	21	
		·	SEMESTER – II		·					
III	Core: IX	21PHP 09	Quantum Mechanics - II	5	3	50	50	100	4	
III	Core: X	21PHP10	Advanced Electronics	5	3	50	50	100	4	
III	Core: XI	21PHP11	Solar Physics	5	3	50	50	100	4	

			Comprehension in Physics - II						
III	Core : XII	21PHP12	(MCQ from Part-III courses / Online exam)		2		100	100	1
III	Core : VI	21PHP06	Advanced Physics Practical-I	5	3 50		50	100	4
III	Core : VII	21PHP07	General Electronics Practical-I	5	3	50	50	100	4
Ш	Elective: II	21PHP13 A/ 21PHP13 B	Astronomy & Astrophysics/ Experimental Techniques	5	3	3 50		100	4
IV	Ability Enhancem ent Course	21AEP01	Cyber Security	2		100)	100	2
			TOTAL	30				800	27
			SEMESTER – III						
III	Core : XIV	21PHP14	Atomic and Molecular Spectroscopy	5	3	50	50	100	4
III	Core : XV	21PHP15	Nuclear Physics & Elementary Particles	5	3	50	50	100	4
III	Core : XVI	21PHP16	Electromagnetic Field Theory	5	3	50	50	100	4
III	Core : XVII	21PHP17	Comprehension in Physics - III (MCQ from Part-III courses / Online exam)		2		100	100	1
Ш	Core : XVIII	21PHP18	Institutional Training	-	-	100	-	100	1
III	Core : XIX	21PHP19	Advanced Physics Practical-II	4	-	-	-	-	-
III	Core : XX	21PHP20	General Electronics Practical-II	4	-	-	-	-	-
III	Core : XXI	Open Elective	For students of other PG programmes	4	3	50	50	100	3

III	Core : Elective XXII	21PHP21A/ 21PHP21B			3	50	50	100	4
V	Proficienc y Enhancem	21PEP01	Laser and its applications (Self – Study)	-	3	-	100	100	2
			TOTAL	30					23
			SEMESTER – IV						
III	Core : XXII	I 21PHP22	Condensed Matter Physics	6	3	50	50	100	4
III	Core : XXI	V 21PHP23	Thermodynamics and Statistical	6	3	50	50	100	4
III	Core : XXV	21PHP24	Electronic Communication Systems	6	3	50	50	100	4
III	Core : XXV	21PHP25 I	Comprehension in Physics – IV (MCQ from Part-III courses / Online exam)		2		100	100	1
III	Core : XIX	21PHP19	Advanced Physics Practical-II	5	6	50	50	100	4
III	Core : XX	21PHP20	General Electronics Practical- II	5	6	50	50	100	4
III	Core :	21PHP26	Project Work & Viva Voce	2	3	50	50	100	4
			TOTAL	30				700	25
V	Competency		Online Course / Learning Object Repository (LOR)		SEMESTER I – IV				
Ť	Enhancemer	nt	Certificate Course	SEM	ESTER	I - IV			2
				Total	Marks	& Cree	dits -	2900	100

Co-Scholastic Courses:

The Co-Scholastic courses are non-credit and are only counted for the final grading and ranking. However for the award of the degree, completion of co-scholastic courses is also MANDATED. There are TWO categories in this:

(i) Value-added Courses:

Course Code	CATEGORY		Marks	Credits
Will be given by coe	VALUE ADDED COURSE - I	MATERIAL SCIENCE	100	Will be finalised
21	VALUE ADDED COURSE - II	PROBLEM SOLVING ING FOR NET/SLET EXAMS	100	

NOTE:

a) <u>Credit Transferability:</u> Course(s) from UGC SWAYAM MOOCS can be completed by students and the credits earned can be transferred under PART-III/PART-IV/PART-V: ANY SEMESTER. (Refer guidelines under other components)

b) Extra Credit Course(s):

A student who is interested shall take up any course(s) (one or many, PART-III only) and earn extra credits. There are FOUR categories in this:

(a) Courses offered by parent department for ALL STUDENTS

(b) Courses offered by parent department for ADVANCED LEARNERS

Course Code	Department	Courses offered for ADVANCED LEARNERS ONLY
21	Department of Physics	 1) ADVANCED QUANTUM MECHANICS 2) PLASMA PHYSICS 3) STATISTICAL MECHANICS 4) ADVANCED INSTRUMENTATION

(c) Courses offered under PART-III in other programmes

(d) General Courses in SWAYAM MOOCS

Category	Course Type	Course Code	Course T	itle	Contac Hours		redit
Part – III	Core: I	21PHP01	CLASSICAL MECHANICS		5	5 4	
Contact he Contact he	ours per se ours per wo						
Year	9	Semester	Internal Marks	Externa Marks		Total M	arks
2021		Ι	50	50		100	
fundamenta Lagrangiar	al concepts and Hamil	in the dynamic tonian formula	students, the know es of system of par tion of mechanics	ticles, motio	on of rigi	d body,	
Course Ou	itcome: On	the successful	completion of the	course, stu	dents wil	l be able	to
COs		C	ourse Outcome				vledge (RBT)
CO1	recall impo Phase Space	k	K1				
CO2	illustrate D'Alembert's principle, Hamilton's CanonicalEquation of Motion, Poisson Brackets, Principle of LeastAction, Equivalent One body problem, Euler's theorem,Euler's angles, Kepler's Problem - Shapes of orbits						
CO3	Harmonic	-	milton's equation ple Pendulum, Isc Oscillator			k	ζ3
CO4	analyze Inertial/Non inertial frames, Stable and Unstable Equilibrium, The motion of a Symmetric Top under the action of Gravity, Equation of motion in Poisson Bracket form						Κ4
CO5	evaluate the Hamilton's Variational principle, Canonical Transformations, Generating Function and different forms, Principle Axis of Transformation, Moments and Products of InertiaK5						\$5
CO6	formulate	Effects of Cori	olis force on movi	ng bodies.		k	K6
K1 – Reme K5 – Evalu	,	K2 – Underst K6 – Create	and; K3 – App	ly;	K4 – Ar	nalyze;	

CO-PSO MAPPING (COURSE ARTICULATION MATRIX)

PSO COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	9	9	9	9	9	3	1
CO2	9	9	9	9	9	3	1
CO3	9	9	9	3	3	3	1
CO4	9	9	9	3	3	3	1
CO5	9	9	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contribution of COs to PSO s	54	48	42	26	28	14	6
Weighted Percentage o COs Contribution to P PSO s							
	relation: 0 –			ow correla	ntion; 3 – N	ledium co	orrelation
- High cor	relation betv	veen COs a	ind PSOs				
			SYLLA	BUS			
Unit	Course Content						structiona Hours
	Lagrangian	Formulatio	n				

I Constraints and Degrees of Freedom-Generalized Coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, force & Potential-Variational technique and Euler Lagrange Differential equation-Hamilton's Variational principle-Lagrange's equation of motion from Hamilton's principle-D'Alembert's principle-Application of Lagrange's equation of motion: Linear Harmonic Oscillator-Simple Pendulum-Isotropic Oscillator.

	Hamiltonian Formulation	
п	Phase space – Hamiltonian - Hamilton's Canonical Equation of Motion - Physical Significance of H - Deduction of Canonical Equation from Variation principle - Application of Hamilton's equation of motion: Simple Pendulum, Linear Harmonic Oscillator, and Isotropic Oscillator - Principle of Least Action and Proof - Canonical Transformations - Generating Function and different forms.	15
III	Hamilton –Jacobi Method Hamilton Jacobi Method- Solution of Harmonic Oscillator Problem by HJ method-Particle falling freely-Damped Harmonic Oscillator-Poisson Brackets-Definition-Equation of motion in Poisson Bracket form-Jacobi -Poisson Theorem- Angular Momentum and Poisson's Bracket.	15
IV	Two Body Problems Equivalent One body problem-General Features of central force motion-Stability of orbits and Conditions for closure- Kepler's Problem - Shapes of orbits-Inertial/Non inertial frames-Rotating Co-ordinate system-Effects of Coriolis force on moving bodies.	15
V	Rigid body dynamics Euler's theorem-Euler's angles-Angular velocity of a rigid body-Angular momentum of Rigid Body-Moments and Products of Inertia-Principle Axis of Transformation-Torque Free Motion of a Rigid Body-Poinsot Solutions-The motion of a Symmetric Top under the action of Gravity-Stable and Unstable Equilibrium.	15
Text Book	S	
1. Cla s	ssical Mechanics - S.L.Gupta, V. Kumar & H. V. Sharma, 2015, Pra	gati Prakashan,

Meerut. (All units)

Reference Books

1. *Classical Mechanics*, H. Goldstein, 1996, Addison Wesley, London.

Category	Course Type	Course Code	Course T	ïtle	Con Ho		Credit		
Part – III	Core: II	21PHP02	MATHEMA' PHYSI(L 5		CAL 5		4
	ours per se ours per we								
Year	S	Semester	Internal Marks	Externa Marks		Т	otal Marks		
2021		Ι	50	50			100		
		-	students firm four erstanding differer				ematical		
Course Ou	itcome: On	the successful	completion of the	e course, stu	dents	will b	e able to		
COs			Knowledge Level (RBT)						
CO1	identify the Polynomia		K1						
CO2	summarize the Legendre's Polynomials and Functions, Orthogonality, Functions of a Complex Variable, Vector Space, Basis, Inner Product, Fourier Series, Laplace Transform, Multiplication table, Subgroups, cosets and classes, Schur's lemma, rotation groups								
CO3	perform th	* 1	ion and complex v	variables in	variou	IS	K3		
CO4			d variables, vector	space and g	groups		K4		
CO5	relate the I	Legendre Polyn	nomial and their de	erivatives			К5		
CO6	Make Four problems a groups	K6							
K1 – Rem K5 – Eval	ember;	K2 – Understa K6 – Create	and; K3 – App	ly;	K4 –	Anal	yze;		
	CO- PSO	MAPPING (COURSE ARTIC	CULATION	N MA'	TRIX			
CO – PSO	Mapping								

PSO_CO)s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSC	06	PSO 7
CO1		9	9	9	3	3	3	;	1
CO2		9	9	9	3	3	3	;	1
CO3	9 9 9 3 3		3	;	1				
CO4		9	9	3	3	3	1	-	1
CO5		9	3	3	3	1	1		1
CO6		9	3	3	1	1	1	-	1
Total Contributi of COs t PSO s	0	54	42	36	16	14	10	0	6
Weighte Percentage COs Contributi to PSO	d e of ion								
			No correla veen COs a			ntion; 3 – N	Iediuı	n cor	relation;
Unit			С	ourse Con	tent			Instructional Hours	
I Special Functions: Legendre's Polynomials and Functions- Differential Equations and Solutions-Generating Functions- Orthogonality-Relation between Legendre Polynomial and their Derivatives Recurrence Relations- Bessel's Function- Differential Equation and Solution-Generating Functions- Recurrence Relations- Hermite function.									15
Complex Variable Theory: Functions of a Complex Variable- Single and Multi valued Functions-Cauchy-Reimann Differential Equation-Analytical Line Integrals of Complex Function-Cauchy's Integral Theorem and Integral Formula- Derivatives of an Analytic Function-Taylor's Variables Residue and Cauchy's Residue Theorem.								15	

		[
	Linear Space	
III	Definition of Vector Space-Linear Dependence-Linear	15
111	Independence-Basis-Dimension of a Vector Space-	15
	Representation of Vectors and Linear Operators with respect to	
	Basis-Schmidt Orthogonalization Process-Inner Product.	
	Fourier Series & Laplace Transforms	
	Fourier Series-Dirichlet's Theorem-Change of Interval-	
	Complex Form-Fourier Series in the Interval $(0, \infty)$ - Uses of	15
IV	Fourier SeriesLaplace Transform-Definition-Properties-	15
	Translation Property-Inverse Laplace Transform-Properties,	
	example problems.	
	Group Theory	
	Definition of Groups– Multiplication table – Subgroups,	
	cosets and classes – Point and space groups – Homomorphism	
v	and isomorphism – Reducible and irreducible representations –	15
	Schur's lemma The great orthogonality theorem (qualitative	
	treatment without proof) – Formation of character table of C2v	
	and C3v Elementary ideas of rotation groups.	
Text Bo		
	Nathematical Physics, SathyaPrakash, 2002, Sultan Chand & Sons.	ISBN: 81-7014-
	25-8] (All Units) Asthematical methods for Physicists Arfkon weber & Herris 200	DE 7th adition
	Nathematical methods for Physicists, Arfken, weber & Harris, 200 Isevier Academic Press.	JS, 7th ealtion,
	Elements of group theory for Physicists - A.W. Joshi, -Wiley Easterr	n, 2002 (Unit –
	V)	
Referen		
	Nathematical Physics, B.D. Gupta, 3rd Edition, 2006, Vikas Publishir	-
	Nathematical Physics , B.S. Rajput, 17th Edition 2004, Pragati Prakas	
	Mathematical Physics , P.K. Chattopadhayay, New Age International, Mathematical Physics , P.B. Cunta, Vaday& Malik, KadarnathBampat	
4. N	Mathematical Physics, P.P. Gupta, Yadav& Malik, KedarnathRamnat	n, weerut.

Category	Course Type	Course Code	Cour	se Title		Contact Hours	Credit	
Part – III	Core: III	21PHP03	-	NTUM IANICS-2	[5	4	
Contact he Contact he	ours per se ours per we							
Year	<u> </u>	Semester	Internal Marks		External Marks	Т	otal Marks	
2021		Ι	50		50		100	
	learn the ap	to make the st oproximation n			-			
Course Ou	tcome: On	the successful	completion of	of the cour	rse, stude	nts will b	e able to	
COs		Ce	ourse Outcor	ne			Knowledge Level (RBT)	
CO1	CO1 recall the limitations of Classical Physics, wave packets, wave functions, Schrödinger equation, operators and eigen values in quantum mechanical systems							
CO2	explain matrix formalisms in quantum mechanics, Schrödinger equation of motion, approximation methods and commutation relations.						K2	
CO3		ödinger equati tum mechanica s					K3	
CO4		he various app Schrodinger, l					K4	
CO5	Validate th	ne matrix represe addition of ang	sentation of a	ngular mo	omentum		K5	
CO6	formulate	wave functions	s and operator	s in matri	x form.		K6	
K1 – Remo K5 – Evalı	/	K2 – Underst K6 – Create	and; K3 –	Apply;	K	4 – Anal	lyze;	
	CO- PSO	MAPPING (COURSE AI	RTICUL	ATION N	ATRIX	()	
CO – PSO	Mapping							
PSO CO	s PSO	1 PSO 2	PSO 3	PSO 4	PSO 5	PSO	6 PSO 7	

CO1		9	9	9	9	9	9		3		
CO2		9	9	9	9	9	3		3		
CO3		9	9	9	3	3	3		1		
CO4		9	9	3	1	1	3		1		
CO5		9	3	3	1	1	1		1		
CO6		9	3	3	1	1	1		1		
Total Contributi of COs to PSO s		54	42	36	24	24	20	20			
Weighted Percentage COs Contributi to PSO Level of c	Weighted Percentage of										
9- High co	orrel	ation betw	reen COs a								
				SYLLA	BUS						
Unit			С	ourse Con	tent				ructional Hours		
Inadequacy of classical Physics - Wave packets –Uncertainty relations-Schrodinger wave equation and probabilistic interpretation. Hilbert space – Dirac's bra and ket notation – Operators as matrices – Matrix form of wave functions – Unitary transformation: Change of basis – Properties of unitary transformations – Schrodinger picture – Heisenberg picture – Interaction picture									15		
II	Sc Th axi rot φ,	chrödinger' ree dimens is – Solutio ator – Rigi θ and r equ	s equation ional harmo on of wave d rotator in uations and ogen atom	for spherication onic oscillate equation a fixed pla their solut	tor – Rigid and eigen ine – The H ions – Ener	rotator with function fo lydrogen at gy eigen v	n free r the om – alues		15		

		Γ
	hydrogen atom	
III	Time independent Approximation MethodsTime Independent Perturbation Theory in Non-DegenerateCase-Ground State of Helium Atom- Degenerate Case-StarkEffect in Hydrogen-Variation Method & its Application toHydrogen Molecule- WKB Approximation.	15
	Time Dependent Perturbation Theory	
IV	Time Dependent Perturbation Theory-First and Second Order Transitions-Transition to Continuum of States-Fermi Golden Rule-Constant and Harmonic Perturbation-Transition Probabilities-Selection Rules for Dipole Radiation-Collision- Adiabatic Approximation	15
	Angular Momentum	
V	Orbital Angular Momentum-Spin Angular Momentum-Total Angular Momentum Operators-Commutation Relations of Total Angular Momentum with Components-Ladder Operators-Commutation Relation of Jz with J_+ and J Eigen Values of J^2 , Jz -Matrix Representation of J^2 , Jz, J_+ and J Addition of Angular Momenta- Clebsch Gordon Coefficients- Calculation of Clebsch Gordon Coefficients for $j_1=1/2$, $j_2=1/2$.	15
Text I		
1.	QuantumMechanics - Aruldas, 2 nd edition, 2013, PHI Learning Pvt. I 81-203-3635-3] (All Units)	Ltd. [ISBN: 978-
2.		n- 2 nd edition-
Refer	ence Books	
	<i>Quantum Mechanics</i> , Leonard I. Schiff, 1968, Mc Graw-Hill Book Cor <i>Quantum Mechanics</i> , V. Devanathan, 2005, Narosa Publishing House <i>A textbook of Quantum Mechanics</i> , P.M. Mathews and Venkatesa 2002, Tata Mc Graw Hill publishing company Ltd., New Delhi.	e, New Delhi.

Category	Course Type	Course Code	Co	urse T	itle		ntact ours		Credit		
Part – III	Core: IV	21PHP04		CAL M MATL GRAMI	AB		5		4		
Contact he Contact he	-	mester: 75 eek: 5									
Year		Semester	Intern Mark		Exter Mar		Т	otal 1	Marks		
2021		Ι	50		50		100				
prove resul methods in	ts for vario a modern o	to provide the us numerical r computer lange	oot finding uage	method	ls and to c	ode va	rious n	ume	rical		
Course Ou	itcome: On	the successfu	l completior	n of the	course, st	udents	s will b	e abl	le to		
COs Course Outcome									owledge el (RBT)		
CO1	CO1 remember the Differential equation by using various Numerical methods and MATLAB basics,								K1		
CO2	CO2 explain Newton Raphson Method, Guass elimination Method, Runge kutta method, Simpson's rule , Trapezoidal rule, Gauss Quadrature , MATLAB fundamentals, in programming and Graphucs								K2		
CO3	Demos, O	ous numerical Control flow st and Graphics v	atements, M	IATLA	B fundam		,		К3		
CO4	correlate I Giraffe's r	Different Techn oot square me ops MATLAB	niques in Nu thods and N	imerica /IATLA	l methods B progra				K4		
CO5	validate th fundament	e different me tals in Basic M ion of 2D and	thods in Nui IATLAB pro	merical ogramn	Methods ning and	and			K5		
CO6	-	nerical Method programming	•						K6		
K1 – Reme K5 – Evalu		K2 – Underst K6 – Create	tand; K3	– App	ly;	K4	– Anal	yze;			
	CO- PSC) MAPPING	COURSE A	ARTIC	CULATIO	ON MA	ATRIX	()			
CO – PSO	Mapping										
P\$0.CO	s PSO	1 PSO 2	PSO 3	PSO	4 PS	05	PSO	6	PSO 7		
CO1	9	9	9	9	()	3		3		

				<u></u>	<u></u>						
CO2	9	9	9	9	9	3		3			
CO3	9	9	9	9	3	3		3			
CO4	9	9	9	3	3	1		1			
CO5	9	9	3	3	1	1	1 1				
CO6	9	9	3	3	1	1	1 1				
Total Contributi of COs to PSOs	51	54	42	36	12	2	12				
Weighted Percentage COs Contributi to PSOs Level of c	on			ow correla	ntion; 3 – N	lediur	n cor	relation;			
			SYLLA	BUS							
Unit Course Content								ructional Hours			
Ι	I Numerical Differentiation Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method-Solution of Simultaneous Linear Equation by Gauss Elimination Method (includes inverse of matrices)- Solution of Ordinary Differential Equation by Euler, Runge- Kutta Fourth Order Method for solving first order Ordinary Differential Equations.							15			
IINumerical Integration Newton's cotes formula-Trapezoidal rule-Simpson's 1/3 rule- Simpson's 3/8 rule -Gaussian quadrature method-(2 point and 3 point formulae)-Giraffe's root square method for solving algebraic equation.							15				
ш	Introduction Command,	n-MATLAB Workspace,	algebraic equation. MATLAB Fundamentals Introduction-MATLAB Features-Desktop windows: Command, Workspace, Command History, Array Editor and Current Directory -MATLAB Help and Demos- MATLAB								

	Functions, Operators and Commands. Basic Arithmetic in	
	MATLAB-Basic Operations with Scalars, Vectors and Arrays-	
	Marices and Matrix Operations-Complex Numbers-	
	MATLAB Built-In Functions- Saving and loading data –	
	Plotting simple graphs-Illustrative Examples	
	MATLAB Programming	
	Control Flow Statements: if, else, else if, switch Statements-	
	for, while Loop Structures-break Statement-Input/output	
	Commands-Script "m" Files -Function "m" Files-Controlling	
IV	Output - Language specific features – Advanced Data objects .	15
	Applications – (Programs about Linear Algebra – Curve fitting	
	and Interpolation – Data analysis and Statistics – Numerical	
	Integration – Ordinary differential equations – Nonlinear	
	Algebraic Equations).	
	MATLAB Graphics	
	2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour	
	Plots- Using subplot to Layout multiple graphs -Multiple	
V	Figures, Graph of a Function-Titles, Labels, Text in a Graph-	15
	Line Types, Marker types, Colors-3D Graphics-Curve Plots-	
	Mesh and Surface Plots- Handle Graphics - Saving and	
	printing Graphs – Errors - Illustrative Examples	
Text I	Books	
1.	Numerical methods - Kandasamy. P, Thilagavathi. K, Volume I a	nd II, 2004, S.
	Chand and Company Ltd, New Delhi. (Units I & II)	
2.	Getting Started with MATLAB – A Quick Introduction for Scientists	and Engineers,
	Rudra Pratap, 2003, Oxford University Press. (Units III – V)	
3.	MATLAB An Introduction with Applications - Amos Gilat, 2007, John	n Wiley & Sons,
	Inc., U.K. [ISBN: 978-81-26511394-9] (Units III – V)	
Refer	ence Books	
1.	Numerical methods in Science and Engineering, M. K. Venkat	araman, 1996.
	National Publishing Co. Madras.	,,
2.	Engineering and Scientific Computations Using MATLAB, Serge	y E. Lyshevski.
	2003, John Wiley & Sons Inc, publication. [ISBN 0-471-46200-4]	, ,,
3.	Numerical Methods Using Matlab, John Mathews & Kurtis Fink,	2006, Prentice
	Hall, New Jersey.	,
4.	Introductory Methods of Numerical Analysis, S.S. Sastry, 2005, Pren	tice Hall.
5.	Introduction to MATLAB 7 for Engineers, William John Palm, 2005	5, McGraw, Hill
·		

Professional.

6. Introduction to MATLAB 7, Dolores M. Etter, David C. Kuncicky, 2004, Prentice Hall.

Category	Course Type	Course Code	Course T	itle	Contact Hours	Credit	
Part – III	Core: V	21PHP05	COMPREHEN PHYSICS -I	SION IN	-	1	
	ours per se					-	
Year		Semester	Internal Marks	Externa Marks		Fotal Marks	
2021		Ι	-	100		100	
prove resul methods in	ts for vario a modern c	us numerical re computer langu		ls and to co	de various	numerical	
COs	itcome: On		completion of the	course, stu		Knowledge Level (RBT)	
CO1	Mechanics	, Mathematica	d formulae of the l Physics, Quantur ATLAB Programm	n Mechanic		K1	
CO2	Mechanics	, Mathematica	and formulae in the l Physics, Quantur ATLAB Programm	n Mechanic		К2	
CO3	Mathemati	-	in the courses Cla uantum Mechanic ogramming			К3	
CO4	Mathemati	examine & analyze the concepts of Classical Mechanics, Mathematical Physics, Quantum Mechanics and Numerical K4 methods & MATLAB Programming					
CO5	Mechanics	, Mathematica	eters of the courses l Physics, Quantur ATLAB Program	n Mechanic	s and	К5	

K1 – Rem K5 – Eval		K2 – Understand; K6 – Create	K3 – Apply;	K4 – Ana	alyze;
CO6	Physics,	Quantum Mechanics a B Programming in dif	nd Numerical met		K6
	adapt var	ious concepts of Class	ical Mechanics, N	Iathematical	

CO- PSO MAPPING (COURSE ARTICULATION MATRIX)

CO – PSO Mapping

PSO COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	9	9	9	9	9	9	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	13	3	3	3
CO4	9	3	3	1	1	3	3
CO5	9	3	3	1	1	1	3
CO6	9	3	1	0	0	0	1
Total Contribution of COs to PSOs	54	36	34	24	17	19	16
Weighted Percentage of COs Contribution to PSOs							
Level of corre				Low correla	ation; 3 – N	Aedium co	rrelation;

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: VI	21PHP06	ADVANCED PHYSICS PRACTICAL - I	3	4
Contact he Contact he		mester: 120 eek: 6			

Year	· Semester	Total Marks				
2021		50	50	100		
	e: The aim is to provide t nts, learn about handling	-				
Course O	outcome: On the successi	ful completion of the	e course, students	will be able to		
COs		Course Outcome		Knowledge Level (RBT)		
CO1	CO1identify the basic concepts of experiments related to theories in Modern Physics recognize various commands and formulae in MATLAB					
CO2	illustrate the working p	rinciples of various	experimental setu	ips K2		
CO3	use different experiment properties of solids and apply the formulae to c experiments implement the procedu and process the MATL	l liquids alculate the output v res of solving physic	values for various	K.3		
CO4	compare and contrast the various physical constant correlate the relations by experimental observations	nts and values between theoretical v		of K4		
CO5						
CO6	design the desired circu and justify the observed rewrite the MATLAB 1 the specific problem	d values		K6		

K5 – Evaluate;

K6 – Create

CO- PSO MAPPING (COURSE ARTICULATION MATRIX)

CO – PSO Mapping

PSO 1 9 9 9	PSO 2 9 9	PSO 3 9 9	PSO 4 9 9	PSO 5 9 9	PSO 6 9	PSO 7 3
9	9	-				3
-	-	9	9	0		
9	0			9	9	3
	7	3	3	9	9	1
9	9	3	3	3	3	1
9	9	3	3	3	3	1
3	3	0	3	0	3	0
48	48	27	30	33	36	9
	9 3 48	9 9 3 3 48 48	9 9 3 3 3 0 48 48 27	9 9 3 3 3 3 0 3 48 48 27 30	9 9 3 3 3 3 3 0 3 0 48 48 27 30 33	9 9 3 3 3 3 3 3 0 3 0 3

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;

9- High correlation between COs and PSOs

SYLLABUS

S.No	Course Content	Instructional Hours
1	Young's Modulus-Elliptical Fringes (Cornu's Method)	
2	Young's Modulus-Hyperbolic Fringes (Cornu's Method)	
3	Viscosity of a Liquid-Mayer's Oscillating Disc	120
4	Stefan's Constant	
5	Rydberg's Constant-Solar Spectrum	
6	Thickness of Wire by Air Wedge and Diffraction	

7	Determination of Audio Frequencies-Bridge Method	
8	Thermionic Work Function	
9	Thermal Conductivity-Forbe's Method	
10	Electronic Charge 'e' by Millikan's Oil Drop Method	
11	Electronic Specific Charge 'e/m' by Thomson's Method	
12	Thermistor-Temperature Coefficient and Band Gap Energy	
13	Determination Specific Heat of a Liquid-Ferguson's Method	
14	Biprism on Optical Bench-Determination of Wavelength	
15	He-Ne Laser – Measurement of Wavelength using reflectance grating.	
16	Babinet's Compensator	
17	LG Plate-Resolving Power	
18	Thickness of the wire by diffraction	
19	Fabry-Perot Interferometer-Study of Fine Structure	
20	Geiger Muller Counter-Determination of Half Life of 'In'	
21	MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations	
22	MATLAB Programming – Solution of Ordinary Differential Equations	
23	MATLAB Programming -Runge-Kutta Method	
24	MATLAB Programming -Newton-Raphson Method	
25	MATLAB Programming-Mean, Median & Standard Deviation	
26	MATLAB Programming-Curve Fitting & Interpolation	
27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	

31	He-Ne Laser – Thickness of Wire		
----	---------------------------------	--	--

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
Part – III	Core:VII	21PHP07	GENER ELECTRO PRACTICA	NICS		4
	ours per sen ours per we					
Year	YearSemesterInternalExternalMarksMarks					
experiment used	s, learn abo	ut handling o	50 students better pr f experiments and completion of the	l to know a	bout diffe	rent equipment
COs			ourse Outcome	- course, stu		Knowledge Level (RBT)
CO1	demonstrate and explain basic electrical and electronic components and different types of circuits recognize various commands and formulae in MATLAB					K1
CO2	-		nciples of the elect of diodes, OP-AM			K2
CO3	use CRO ar its amplitud to calculate relate the el MATLAB	equations cuits	К3			
CO4	compare and contrast the various circuits for the specific application correlate the relations between theoretical values and experimental observations construct various electronic circuits using diodes, OP-AMP, BJT, SCR, FET and UJTK4					
CO5		ols assess rect	s of the constructe ify the errors if an		U	K5

CO6	MATLAB program based on the requirements of the specific problem	K6
CO6	design the desired circuit based on the parameters and properties of the various electronic components rewrite the	K6

K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PSO Mapping

PSO COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0
Total Contribution of COs to PSOs	48	48	27	30	33	36	9
Weighted Percentage of COs Contribution to PSOs							
Level of corre	elation: 0 –	No correla	ntion; 1 – L	ow correla	ntion; 3 – N	fedium cor	relation;

9- High correlation between COs and PSOs

SYLLABUS ANY FIFTEEN(15) EXPERIMENTS ONLY EXAMINATION AT THE END OF SECOND SEMESTER

S.No	Course Content	Instructional Hours
1	Design of Regulated and Dual Power Supply.	120
2	Basic Logic Gates-Digital IC's	

3	Parameters of Op-Amp	
4	Design of Wave Form Generators- using Op-Amp.	
5	Design of Phase-Shift Oscillator- Op-Amp	
6	Design of Wein's Bridge Oscillator- Op-Amp	
7	Design of Active Filters- Op-Amp	
8	Design of Differential Amplifier- Op-Amp	
9	Sign Changer, Scale Changer, Adder and Subtractor- Op-Amp	
10	Design of UJT Relaxation Oscillator	
11	CRO-Differentiating, Integrating, Clipping and Clamping Circuits, Square Wave Testing	
12	SCR-Characteristics and an Application	
13	Source Follower	
14	Amplifier-Inverting, Non-Inverting, Voltage Follower- Op- Amp	
15	Characteristics of FET	
16	Digital IC's- Counters	
17	Schmitt Trigger using discrete components and OP-AMP/ Timer 555	
18	D/A converter using Op. Amp	
19	MATLAB Programming-Charging of a Capacitor in an RC Circuit with three Time Constants	
20	MATLAB Programming- Full Wave Rectifier-Determination of (a) Peak-to-Peak Value of Ripple Voltage, (b) DC Output Voltage (c) Discharge Time of the Capacitor (d) Period of Ripple Voltage	
21	MATLAB Programming- Plot of Voltage and Current of an RLC Circuit under Steady State Conditions	
22	MATLAB Programming- NPN Transistor-Plotting Input & Output Characteristics	
23	MATLAB Programming-Frequency Response of a Low Pass Op-Amp Filter Circuit	
24	MATLAB Programming-Diode-Plot of Forward Characteristics & Load Line Plot - Estimation of Operating Point.	

Category	Course Type	Course Code	Co	urse Title			ntact ours	Credit		
Part – III	Core: Elective I	21PHP08 A	ESSENTIALS OF NANOSCIENCE 4			4	4			
Contact hours per semester: 60 Contact hours per week: 4										
Year	YearSemesterInternalExternalMarksMarks						Το	Total Marks		
2021		Ι	50		50			100		
		o provide the		-						
	-	re the knowle	edge about s	synthesis r	nethods	and c	haracte	erization		
	and its appli									
Course Ou	tcome: On t	he successful	completior	n of the co	urse, stu	dents	will be	e able to		
COs		C	ourse Outc	ome				Knowledg Level (RB)	-	
CO1		sic concepts		ence, Nan	otechnol	ogy a	nd	K1		
		Introduction t								
CO2	-	Nano materia		icture, pro	perties,			K2		
CO3		and application met		thesis the i	new nand	2		K3		
005	particles		lious to syn		ie w nun	0		K5		
CO4	infer the che	emical interac	tions, quan	tum confir	nement a	nd		K4		
		aracteristics of			•					
CO5	•	anoparticles d ano particles a		•	-	dot,		K5		
CO6		ano particles a				of		K6		
000		and medical, o					ems	110		
K1 – Rem		2 – Underst	and; K3	- Apply;		K4 –	- Anal	yze;		
K5 – Evalı	iate; F	K6 – Create								
	CO-PSO	MAPPING (COURSE A	ARTICUI	ATION	MA'	TRIX)		
CO – PSO	Mapping									
PSO CO	s PSO 1	PSO 2	PSO 3	PSO 4	PSO	5	PSO	6 PSO	7	
CO1	9	9	9	9	9		3	3		
CO2	9	9	9	3	3		3	3		
CO3	9	9	9	9	3		2	3		

		1	1		1	1		
CO4	9	9	9	3	3	2		3
CO5	9	9	3	3	2	1		3
CO6	9	9	3	3	3	3		1
Total Contribution of COs to P		54	42	30	23	14	1	16
Weighted Percentage COs Contributio to PSOs	of							
Level of co	orrelation: 0 -	No correla	ation; 1 – L	low correla	tion; 3 – N	lediur	n cor	relation;
9- High co	rrelation betw	veen COs a	nd PSOs					
			SYLLA	BUS				
T		0		4 4			Inst	ructional
Unit		C	Course Con	tent			Hours	
I	Evolution of Nanoscience and NanotechnologyHistory of Nanoscience and Nanotechnology – Ancient, Medieval and Modern period – Terms and Definitions – Scale of materials – macro, micro and nanoscale – pioneers and contributors in Nanoscience and nanotechnology – Fabrication methods – Top-down and bottom-up approaches (Principles and types) – Nanoscience and nanotechnology practiced by nature –Inspirations from nature – Natural nanomaterials – Inorganic, organic and biological origin.							12
Π	NanomaterialsStructure , properties and importance of the following Nanomaterials - Metallic nanoparticles – Semiconductor quantum dots, core-shell nanoparticles - carbon based nanomaterials – fullerenes, carbon nanotubes (single walled and multi walled) and graphenes – Supramolecules – Dendrimers, micelles and reverse micelles – Nanoporous Materials. (Synthesis of the nanomaterials not included)							12
III	Polymeric N Introduction			cation of p	olymers – 1	types		12

	of polymerization processes – Block copolymers - Glass transition temperature of Polymers – Structure, properties and importance of selected synthetic and Biopolymers – Polystyrene, Polyvinyl alcohol, Polystyrene sulphonate, Polyethylene glycol, Polyhydroxy alkanoate, Polylactic acid and Chitosan – Conducting polymers – Introduction, principle of conduction and different types of conducting polymers.	
IV	Properties at the Nanoscale – I Comparison of properties at bulk and nano – Surface and Volume – Surface energy – Surface stabilization – Surface energy minimization mechanisms – Application of classical thermodynamics 133 to nanomaterials (Small system thermodynamics) – Chemical interactions at Nanoscale Primary interactions (Ionic, Covalent and Metallic bonds) – Secondary interactions – Electrostatic interaction, Hydrogen bonding, Van-der waals attraction, hydrophobic effect.	12
V	Properties at the Nanoscale – II Optical properties in metals, semiconductors and insulators- Photoluminescence - Cathode luminescence- Electro luminescence- Fluorescence- Phosphorescence- Surface Plasmon resonance and optical properties in metallic nanoparticles – Quantum confinement and emission characteristics of semiconductor nanocrystals – optical properties of core-shell nanoparticles – Mechanical, thermal and electrical properties of carbon based nanomaterials (CNT & graphenes) – Guest-Host relationship and Molecular recognition in supramolecules.	12
97: 2. Pri	noscience and Nanotechnology - M. S. Ramachandra Rao Shuk 8 – 81 – 265 – 4201 – 7]. (Units I, II and III) nciples of Nanoscience and Nanotechnology - M. A. ShahTokeerA blishing home pvt. Ltd., [ISBN: 978 – 81 – 8487 – 072 – 5]. (Units IN	hmad, Narosa

- 1. Nanotechnology, Er. Rakesh Rathi, 2009-15, S. Chand and Co. Pvt. Ltd.
- 2. Nanotechnology Science Innovations and Oppurtunity, Lynn E.Foster.

Category	Course Type	Course Code	Course Title		Con Ho	tact urs	Credit
Part – III	Core: Elective: I	21PHP08B	RADIATION I	PHYSICS	2	4	4
Contact he Contact he	-	mester: 60 eek: 4					
Year		Semester	Internal Marks	Externa Marks		T	otal Marks
2021		Ι	50	50			100
Physics and	d to learn ir	nformation about	deeper knowled ut their principles	and method	s.		
Course Outcome: On the successful completion of the course, students will COs Course Outcome						Knowledge Level (RBT)	
CO1			Radiation physics, ntal radioactivity i		S		K1
CO2	elucidate t	he various type y particles, line	es of interactions b ar accelerators and	etween the			K2
CO3	identify th	e particle detec	tors of gas electro nd semiconductor	-	, surfa	ice	К3
CO4	-	ttenuation with equipment	absorption factor	s of medicir	ne in th	ne	K4
CO5		oxic agent and a adioactivity	mitigating internal	radiation h	azards	,	K5
CO6	CO6 bring out the interaction of the particles using particle detectors, prepare to protect human beings from organizational plan, laboratory procedure for protection of radiation K6					K6	
K1 - Remember;K2 - Understand;K3 - Apply;K4 - Analyze;K5 - Evaluate;K6 - Create							
	CO-PSO	MAPPING (COURSE ARTIC	CULATION	MA	FRIX)

CO – PSC) Ma	opping							
POs COs		PSO 1	PO2	PO3	PO4	PO5	PC)6	PO7
CO1		9	9	9	9	9	3	}	3
CO2		9	9	9	3	3		3	3
CO3		9	9	9	9	3	2	2	3
CO4		9	9	9	3	3	2	2	3
CO5		9	9	3	3	2	1		3
CO6		9	9	3	3	3	3	3	1
Total Contribut of COs t PSOs		54	54	42	30	23	1	4	16
Weighte Percentag COs Contribut to PSOs	e of ion								
Level of c	corre	lation: 0 – ation betw			ow correla	ntion; 3 – N	Iediu	n cor	relation;
				SYLLA	BUS				
Unit	Course Content						Instructional Hours		
Ι	Basic Radiation Physics Introduction to radiation Physics- Atomic and Nuclear structure- Electron interaction- Photon interaction- Classification of forces in nature, fundamental particles, radiation- Atomic and nuclear structure- Bohr's model of the hydrogen atom- Radioactivity- Modes of radioactive decay- Electron Interaction- Photon Interaction.						12		
II	Radiation and Particle DetectorInteraction of particles and radiation with matter- Photoelectric and Compton effect- Gas Electron Multiplier							12	

	(GEM)- Detection of neutrons- Surface photoemission detectors- Photo cathodes and Photo tubes- Semiconductor detectors.							
III	Radioactivity in the Environmental Media: Introduction to environmental radioactivity- Airborne radioactivity- Production and Propagation of Airborne radioactivity by tall & short stacks- Water Activation- Geological Media Activation- The Propagation of Radio nuclides Through Geological Media.	12						
IV	IV Radioactivity in Medicine Basics of radiotherapy- Linear accelerators- Measurin equipments- Treatment planning & process- Dependence of photon energy and atomic number- attenuation and absorption							
v	Radiation Protection Human Factors- Environmental Factors- Toxic Agents, such as radioactive Material- Organizational Plan for Radiation Protection- Radiation Lab Protection Procedures- Accident Anticipation- Mitigating Internal Radiation Hazards.	12						
Web Refe	rences:							
1. <u>http://www-naweb.iaea.org/nahu/DMRP/documents/Chapter1.pdf</u>								
2. <u>https://www.asc.ohio-state.edu/honscheid.1/s12-</u>								
	780/references/turku_lecturenotes.pdf							
	https://www-esh.fnal.gov/TM1934 PDF Files/TM 1934 Revision 9B.pdf							
	ttp://www.imre.ucl.ac.be/rpr/sv2012/RDTH3120-partie1.pdf							
5. <u>htt</u>	5. <u>http://www.ehs.washington.edu/rsotrain/radprotectionprinciples/table_of_conte</u>							
<u>nts</u>	<u>nts.pdf</u>							

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
----------	----------------	----------------	---------------------	------------------	--------

Part – III	Core: IX	21PHP09	-	JANTUM HANICS -	II	5	4	
Contact he Contact he	-	emester: 75 eek: 5						
Year		Semester	Intern Mark			Т	otal Marks	
2021		Π	50		50		100	
	s to atomic	is to make c structures, ab					g theory, the and quantum	
Course Ou	itcome: Or	the successful	l completior	n of the cou	rse, stude	ents will b	be able to	
COs	COs Course Outcome							
CO1	recite the definitions of scattering amplitude and identical K1 particles						K1	
CO2	interpret the scattering process in quantum mechanical system and the application of approximation methods to atomic structure K2							
CO3	apply symmetric and antisymmetric wave functions in central field approximation and apply approximation methods to findK3scattering amplitude and scattering cross sectionK3							
CO4	justify probability and current densities and negative energy K4 states from relativistic wave equations							
CO5	quantize classical and quantum mechanical equations of motions.							
CO6	construct symmetric and antisymmetric wave functions						K6	
K1 – Remo K5 – Evalu	uate;	K2 – Underst K6 – Create				K4 – Anal		
	CO-PSC	MAPPING (COURSE A	ARTICUL	ATION	MATRIX	()	
CO – PSO Mapping								
PSOs	PSO	1 PSO2	PSO3	PSO4	PSO5	PSO	6 PSO7	
COs				~~.				
CO1	9	9	9	3	9	3	3	
CO2	9	9	9	3	9	3	3	
CO3	9	3	3	3	3	3	1	

CO4	3	3	3	1	3	1		1		
CO5	1	1	1	1	1	1		1		
CO6	1	1	1	1	1	1		1		
Total Contribution of COs to PSOs	54	26	26	12	26	12	12 10			
Weighted Percentage COs Contributio	of									
to PSOs Level of co	orrelation: 0	– No correla	tion; 1 – L	ow correla	tion; 3 – N	lediur	n cor	relation;		
9- High co	rrelation bet	ween COs a	nd PSOs							
			SYLLA	BUS						
T I. '							Inst	ructional		
Unit Course Content]	Hours				
Ι	Scattering Theory: Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and its Validity - Partial Wave Analysis - Phase Shifts – Scattering by Coulomb and Yukawa Potential					d its		15		
II Application to Atomic Structure:Central Field Approximation - Thomas Fermi Model –Hartree's Self Consistent Model – Hartree Fock Equation - Alkali Atoms - Doublet Separation –Intensities - Complex Atoms - Coupling Schemes							15			
IIIRelativistic Wave Equation:Klein Gordon Equation - Plane Wave Equation - Charge and Current Density - Application to the study of Hydrogen Like Atoms - Dirac Relativistic Equation for a Free Particle - Dirac Matrices - Dirac Equation in Electromagnetic Field - Negative Energy States.						15				
IV	and anti-s	articles and mmetric w and antisy	vave funct	ions – C	Construction	n of		15		

	exclusion principle – Physical significance – Pauli's spin	
	operator – Commutation relations	
v	Quantum Field Theory: Quantization of Real Scalar wave Field – Quantization of Complex Scalar wave Field - Quantization procedure for particles - Classical Lagrangian Equation -Classical Hamiltonian Equation - Field Quantization of the Non - Relativistic Schrodinger Equation - Creation, Destruction and Number Operators.	15
Text H	Book :	L
1.	QuantumMechanics - Aruldas, 2 nd edition, 2013, PHI Learning Pvt. I 81-203-3635-3] (All Units)	Ltd. [ISBN: 978-
2.	Quantum Mechanics - Leonard.I. Schiff, 1968, McGraw Hill 3rd Editio	on. [ISBN: 0-07-
	085643-5] (Unit II)	
3.	Introduction to Quantum Mechanics – David J Griffiths, Pearson- 2	nd edition-
	2016. [ISBN: 978-93-325-4289-1]	
Refere	ence Books	
1.	A Text Book of Quantum Mechanics -P.M. Mathews & K. Venkatesa Hill 29 th Reprint 2002	n-Tata McGraw
2.	Quantum Mechanics-Devanathan-Narosa Publishing-New Delhi, 200)5
3.	Quantum Mechanics -A.K. Ghatak and S. Loganathan- McMilan In 1999	dia 4 th Edition,
4.	<i>Introduction to Quantum Mechanics</i> – David J Griffiths- Addisor edition	n Wesley – 2 nd

Category	Course Type	Course Code	Course Title		Contact Hours	Credit			
Part – III	Core: X	21PHP10	ADVANCED ELECTRONICS		5	4			
	Contact hours per semester: 75 Contact hours per week: 5								
Year	S	SemesterInternalExternalMarksMarks			otal Marks				

2021			II	50		50		10	0
	e: The aim is to make the students to understand the concept of semi								
devices, t	o gaiı	n knowledg	ge about fal		d characte	ristics of In	1		
Course O	outcon	me: On the	successful	completion	of the cou	rse, student	ts will b	be able	e to
COs	Course Outcome								wledge el (RBT)
CO1		all the logicisters and f	-	ic types of t	ransistors,	counters ,sl	nift		K1
CO2			U	ated circuits y chronolog		SFET,SCR r	,		K2
CO3		examine basic laws of Boolean algebra, De- Margan's theorem and types of flip- flops, A/D converter, D/A converter K3							К3
CO4		lyze the reatern	sults of inte	grated circu	its and nor	n-linear ana	log		K4
CO5				devices suc d field effec	-	register, ph rs.	noto		K5
CO6		ate a new d o, karnaugh	• •	nchronous o	counters by	v using of fli	ip-		K6
K1 – Ren K5 – Eva		/	– Understa – Create	and; K3	– Apply;	K4	– Ana	lyze;	
	C	O-PSO M	APPING (COURSE A	ARTICUL	ATION MA	ATRIX	()	
CO – PS	O Ma	pping							
PSOs COs		PSO1	PSO2	PSO3	PSO4	PSO5	PSC)6	PSO7
CO1		9	9	9	9	3	9		9
~~-		-				-			_

COI	7	7	7	9	5	9	9
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	9	3	3
CO4	9	9	9	9	9	3	3

CO5		9	9	9	9	3	3		1		
CO6		9	9	3	3	3	1		1		
Total Contributi of COs to PSOs		54	54	48	48	36	22	2	20		
Weighted Percentage COs Contributi to PSOs	e of on										
					ow correla	ntion; 3 – N	lediur	n cor	relation;		
9- High co	orrel	ation betw	een COs a								
	1			SYLLA	BUS			.			
Unit			C	ourse Con	tent				ructional Hours		
	Se	miconduct	or Devices								
I	Field effect transistors – JFET bias line and load line – MOSFET construction and Symbols – FET as a Voltage Variable Resistor-Common Source Amplifier at High Frequencies-Common Drain Amplifier at High Frequencies- Silicon Controlled Rectifier (SCR) Characteristics-SCR Power Control- Tunnel Diode -Optoelectronics: Photo Resistor-Photo Diode-Photo Transistor-LED-Photo Voltaic Effect-Solar Cells.						15				
II	IntegratedCircuits-FabricationandCharacteristicsIntegratedcircuittechnology–Basicmonolithiccircuits–Epitaxialgrowth–Maskingandetching–Diffusionofimpurities–Transistorformonolithiccircuits–Monolithicdiodes–Integratedresistors-Integratedcapacitors–Monolithiccircuitlayout–Additionalisolationmethods–LSIandMSI –Metalsemiconductorcontact.–Monolithic–LSI							15			
ш	Lin cha Vo DO	near analog anger – Sca oltage to cu C voltage fo	g systems: le changer rrent conve ollower – I	Basic Op. – Phase shi erter – Cur Differential	Amp. appl fter – Sumi rent to volt DC amplif	uilding Blo ications – ming amplif age conver ier – Stablo differentiati	Sign fier – ter – e AC		15		

	Electronic analog computation	
	Nonlinear analog systems: Comparator – Sample and hold	
	circuits – D/A converter: Binary weighted resister and ladder	
	type $- A/D$ converter: Successive type and Dual-slop converter	
	type - M/D converter. Successive type and Duar-stop converter	
	Flip-flops	
	S-R, Clocked S-R, D, J-K, T, Master-Slave J-K flip-flops –	
	Their state diagrams and characteristic equations - Edge	
	triggering in flip-flops	
	Logic gates: OR, AND, NOT, NOR and NAND gates,	
	Exclusive OR gate – NAND and NOR as Universal gates.	
IV	Boolean algebra and Minimization Techniques	15
	Basic laws of Boolean algebra – De Morgan's theorems –	
	Adder, Subtractor, Comparator, Decoder / Demultiplexer -	
	Sum of products and Product –of-sums - Karnaugh map (up to	
	four variables only) –Don't care	
	Synchronous Counters	
	Design of Synchronous Counters: Design of MOD-3, MOD-6 and MOD 10 counters using IK Moster slove flip flops only	
	, and MOD-10 counters using JK Master-slave flip-flops only –	
V	Register – 4 bit shift Register – Serial-in serial-out, Serial-in Parallel-out, Parallel-in Serial-out and Parallel-in Parallel-out –	15
	Design of four bit self-correcting ring counter using D-flip-flop	
	Design of four oft sen-correcting ring counter using D-mp-nop	
Text B	Doolt -	
		Company Dut
1.	Principles of Electronics - V.K.Mehta, Rohit Mehta, S.Chand and Ltd, [ISBN: 81-219-2450-2].(Unit I)	Company Pvi
2.	Modern Physics - R.Murugeshan, (2013), S.Chand and Compant Pvt	Ltd.
3.	Integrated electronics - Jacob Millman, Christos Halkias, Chetan D	Parikh, Second
	Edition, Tata McGraw hill.(Unit II & III)	
4.	Digital Circuits and Design - S.Salivahanan, S.Arivazhagan, Third	Edition, Vikas
	Publishing house Pvt Ltd.(Unit IV & V)	
Refere	ence Books	
1.	Handbook of Electronics, Gupta and Kumar.	
2.	Digital Fundamentals, Floyd-UBS 1600.	
3.	Digital Principles and Applications, Malvino & Leach, McGraw Hill.	
4.	Applied Electronics, R S Sedha.	

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
Part – III	Core: XI	21PHP11	SOLAR PH	SOLAR PHYSICS		4
Contact he Contact he	-	mester: 75 eek: 3				
Year		Semester	Internal Marks	Externa Marks	-	otal Marks
2021		II	50	50		100

Preamble: The aim is to provide the students an overview of the energy problem faced by the current generation, underline the importance of renewable energy sources and to get a thorough knowledge about renewable solar energy technology

Course Outcome: On the successful completion of the course, students will be able to

COs	Course Outcome	Knowledge Level (RBT)
CO1	recall the facts about Energy Sources and its availability and basics of solar energy	K1
CO2	narrate the principles of solar cells, solar radiation measurements	K2
CO3	Seek different applying technique behind solar cell and creates innovative ideas.	К3
CO4	explore the causes and relationship between different types of solar cells. Helps in evaluating performance of solar cell	K4
CO5	create new innovation on the basis of Solar energy such as solar cell and solar greenhouse	K5
CO6	Develop new proposal on the basis of solar energy principle	K6
K1 – Rer K5 – Eva		alyze;
	CO-PSO MAPPING (COURSE ARTICULATION MATRI	X)
CO – PS	O Mapping	

PSOs		PSO1	PSO2	PSO3	PSO4	PSO5	PS	06	PSO7	
COs		1501	1302	1505	1504	1505	150	00	1507	
CO1		9	9	9	9	3	9)	9	
CO2		9	9	3	9	3	9)	9	
CO3		9	9	3	3	9	9)	9	
CO4		9	3	3	3	3	3		3	
CO5		9	3	3	3	1	3	}	3	
CO6		9	3	3	3	3	3	}	9	
Total Contribution of COs to P		45	36	24	30	22	30	6	42	
Percentage COs Contribution to PSOs	Weighted Percentage of COs Contribution									
9- High co	orrel	ation betw	een COs a	nd PSOs						
				SYLLA	BUS					
Unit			С	course Con	tent				ructional Hours	
I	En ene	nergy sourc	es - World	l and India		iture - Typ rgy sources			15	
IIRenewable EnergyIIProspects of renewable energy sources - solar energy - Its uses and barriers in the implementation of renewable energy systems. Indian research and perspectives								15		
III Solar Energy: Solar radiation at the Earth's Surface - Solar constant. Solar Radiation Measurements: Solar energy measuring							15			

	equipments – pyrheliometers –pyranometers.	
IV	Solar Cells Solar cells for direct conversion of solar energy to electric energy - Solar cell parameter - Solar cell electrical characteristics - Efficiency - Single crystal silicon solar cells - Polycrystalline silicon solar cells - Cadmium sulphide solar cells.	15
V	Applications of Solar Energy Solar water heating - space heating and space cooling - solar photo voltaics - agricultural and industrial process heat - solar distillation - solar pumping- solar furnace - solar water heater - solar cooking - solar green house.	15
Гext Е	Book :	
	Solar Energy Utilisation - G.D.Rai, 1987, Khanna Publishers, New De (All Units) Non-Conventional Energy Sources - B.H.Khan, 2006, Tata McGraw H	
3.	060654-4] Non-Conventional Energy Sources and Utilisation - Er. R. K. S.Chand & Company Pvt. Ltd, [ISBN 81-219-3971-2]. Non-Conventional sources of Energy - G.D.Rai, 5 th Edition, Khanna F New Delhi. [ISBN: 81-7409-073-8]	
Refere	ence Books	
1. 2. 3.	Renewable Energy, Godfrey Boyle, Oxford University Press in assoc Open University, 2004, [ISBN: 9780199261789] Principles of Solar Engineering F. Kreith and J.F. Kreider, 1978, Tata I Solar Energy, M. P. Agarwal, 1983 S. Chand and Co., New Delhi. Solar Energy, S. P. Sukhatme, 1996, Tata McGraw Hill. [ISBN: 0-07-46	McGraw Hill.

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core:	21PHP12	COMPREHENSION IN	-	1

	XII		PHYS	ICS PAPE	R-II		
	ours per sei ours per we						
Year	S	Semester	Interr Marl		External Marks	Tota	l Marks
2021		II	-		100		100
Electronics the concept	, Solar physic is of the syllal	a clear underst es, Experiment oi. the successfu	al Techniques	s, and to mo	otivate the stu	idents to con	nprehend
COs			Course Outo			K	nowledge vel (RBT
CO1	memorizin fundament techniques		K1				
CO2	comparing the particle motion in different well potentials, devices operations, various energy devices, analyzers operation						K2
CO3	determining the solutions of wave functions, various circuits, instruments, Energy resources values.						K3
CO4	Estimating different parameters of scattering theory and relativistic wave motions, integrating circuits, minimizing techniques and energy resources.						K4
CO5	-	atomic stru ocks, amplifi			particles, a	inalog	K5
CO6	-	elf-consisting instruments a		-	ircuits, elec	tronic	K6
K1 – Rem K5 – Eval	/	K2 – Unders K6 – Create	stand; K3	- Apply;	K	4 – Analyz	e;
		MAPPING	(COURSE)	ARTICUI	LATION M	ATRIX)	
) Mapping		-1	T		1	
PSOs COs	PSO	1 PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
	9	9	9	9			1

CO2	9	9	9	9	3	3	3
CO3	9	9	9	13	3	3	3
CO4	9	3	3	1	1	3	3
CO5	9	3	3	1	1	1	3
CO6	9	3	1	0	0	0	1
Total Contribution of COs to PSOs	54	36	34	24	17	19	16
Weighted Percentage of COs Contribution to PSOs							
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PSOs							

Category	Course Type	Course Code	Course T	Course Title		tact urs	Credit		
Part – III	Core: Elective: II	21PHP13A	ASTRONOMY & ASTROPHYSICS				2	5	4
	Contact hours per semester: 75 Contact hours per week: 5								
Year		Semester	Internal Externa Marks Marks		Total Mark		otal Marks		
2021		II	50	50			100		
	Preamble: The aim is to provide the students deeper knowledge and understanding of astronomy, learn information about stars and galaxies and to know about the destruction of stars.								
Course Ou	Course Outcome: On the successful completion of the course, students will be able to								
COs	Course OutcomeKnowledge Level (RBT)								

CO1	outline the history of astronomy, stars, galaxies, components of the Sun and stellar evolution	K1				
CO2	explain the concepts in highlights of Einstein's special and general theory of relativity, fusion reaction mechanism, classification of galaxies and stages of stars	K2				
CO3	classify concepts of astronomy, calculating the distance between stars, components of the Sun, galactic astronomy and stages of stars	К3				
CO4	categorize the classification of galaxies and stars	K4				
CO5	evaluate the science behind observation of universe	K5				
CO6 elaborate the hypothesis behind the geo and helio centric theories, calculating the distance between the stars and its composition, types of galaxies and to formulate the lives and death of stars						
K1 – Rem	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze;					
K5 – Eval	luate; K6 – Create					

	1					1
PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
9	9	3	3	9	9	9
9	9	3	3	9	9	9
9	9	3	3	9	9	9
9	9	1	1	9	9	3
9	3	1	1	9	9	1
9	3	1	1	9	9	1
54	42	12	12	54	54	32
	9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 3 9 3	9 9 3 9 9 3 9 9 3 9 9 3 9 9 1 9 3 1 9 3 1 9 3 1	9 9 3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 3 1 9 9 1 1 9 3 1 1 9 3 1 1 9 3 1 1	9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 9 1 1 9 9 3 1 1 9 9 3 1 1 9 9 3 1 1 9	9 9 3 3 9 9 9 9 3 3 9 9 9 9 3 3 9 9 9 9 3 3 9 9 9 9 3 3 9 9 9 9 3 3 9 9 9 9 1 1 9 9 9 3 1 1 9 9 9 3 1 1 9 9 9 3 1 9 9 9 3 1 9 9 9 3 1 9 9 9 3 1 9 9

	SYLLABUS						
Unit	Course Content	Instructiona Hours					
	History of Astronomy						
I	Introductory History of Astronomy-Ptolemy's Geocentric Universe-Copernicus' Heliocentric Universe- Tycho Brahe and Galileo's Observations- Kepler's Laws of Planetary Motion- Newtonian Concept Of Gravity-Highlights of Einstein's Special and General Theory Of Relativity-Curved Space Time- Evidence of Curved Space Time-Bending Of Light-Time Dilation	15					
	Stars & Galaxies						
п	Stars and Galaxies-Distances-Trigonometric Parallax-Inverse Square Law-Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity-Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars- Temperature Dependence-Spectral Types- Hertzsprung - Russell (HR) Diagram-Spectroscopic Parallax	15					
	Sun and its composition						
III	The Sun-Its Size and Composition- Sun's Interior Zones-Sun's Surface-Photosphere-Chromosphere-Corona-Sun's Power Source-Fusion Reaction Mechanism.	15					
	Galactic astronomy						
IV	Milky Way Hubble classification of galaxies-Spiral galaxies, Elliptical galaxies, Irregular galaxies, Dwarf galaxies; Masses of galaxies-Rotation curves of galaxies; Dark matter.	15					
V	Lives and death of starsStellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-MainSequenceSupergiant-CoreFusion-RedGiant(Or)Supernova-WhiteDwarfs-NovaeAnd	15					

	Supernovae- Neutron Stars-Pulsars-Black Holes-Detecting
	Black Holes
Text I	Book :
1.	Lectures on Astronomy, Astrophysics, and Cosmology - Luis A. Anchordoqu,
	Department of Physics, University of Wisconsin-Milwaukee, U.S.A (Dated: Spring
	2007).
2.	Lecture Notes of Department of Physics - University of Wisconsin-Milwaukee
3.	Astrophysics of the Solar System - K.D. Abhayankar, University press (India) Pvt
	Ltd, January 24, 2017. [ISBN: 9788173719694].
4.	An Introduction to Planetary Physics - The terrastial Planets, William M. Kaula,
	1968, Wiley, NewYork, Space Science text series.
5.	Astrophysics of the Sun - Harold Zirin, Cambridge University Press, 23 June 1988.
Study	material available in the website: <u>www.astronomynotes.com</u> (All Units)

Г

Category	Course Type	Course Code	Course Title Conta Hour			Credit		
Part – III	Core: Elective: II	21PHP13B	EXPERIMENTAL TECHNIQUES				4	
	Contact hours per semester: 75 Contact hours per week: 5							
Year	\$	Semester	Internal Marks		External Marks		otal Marks	
2021		II	50	50		100		
various me	Preamble: The aim is to provide the students knowledge about the techniques behind various measuring instruments and to handle the various electronic measuring instruments Course Outcome: On the successful completion of the course, students will be able to							
COs	COs Course Outcome						Knowledge Level (RBT)	
CO1			easurements, trans truments and Way		-	ers,	K1	
CO2	explain the types of transducer, the working of Amplifiers, Electronic Measuring Instruments and Wave Analyzers						K2	
CO3	apply the different types of transducers, amplifiers, electronic Measuring Instruments					c	K3	
CO4	analyze the instrument		of various electron	ic measurin	g		K4	

CO5	evaluate appropriate methods for analyzing electronic waves							
	and Con	d Conditioning of signals						
CO6	design amplifiers, filters, Electronic Measuring Instruments K6							
	and Way	ve Analyzers						
K1 – Remember;		K2 – Understand;	K3 – Apply;	K4 – Ana	alyze;			
K5 – Evaluate;		K6 – Create			-			

CO – PSO Mapping

PSOs COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	3	3	9	9	9
CO2	9	9	3	3	9	9	9
CO3	9	9	3	3	9	9	9
CO4	9	9	1	1	9	9	3
CO5	9	3	1	1	9	9	1
CO6	9	3	1	1	9	9	1
Total Contribution of COs to PSOs	54	42	12	12	54	54	32
Weighted Percentage of COs Contribution to PSOs							
I aval of corre	lation. A	No connole	tion 1 I	ow oowolo	tion 2 N	Indium on	molation

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;

9- High correlation between COs and PSOs

SYLLABUS

Unit	Course Content	Instructional Hours
I	Measurement of errors: accuracy, precision, resolution, sensitivity -absolute and relative errors-Types of errors -gross error, systematic error and random error. Standards of measurements: Classification of standards, time and frequency standards, electrical standards.	15

п	Electrical Transducer Classification Active and Passive transducers- selecting a good transducer –	15
II	requirements of an electrical transducer – transducer types-	15
	resistive, inductive, capacitive and Piezoelectric transducer-	
	Digital displacement transducers – thermistors.	
	Amplifiers and Signal Conditioning	
ш	Instrumentation amplifiers-Isolation amplifiers-Chopper amplifiers-Voltage to frequency converters-Frequency multipliers-logarithmic amplifiers, S/H Circuits Active filters- Low pass, High pass, Band pass and Band stop filters.	15
IV	ElectronicMeasuringInstrument:Q-meter-VectorimpedancemeterDigitalfrequencymeter-DigitalvoltmeterPhasemeter-RFpowerandvoltagemeasurement-Powerfactormeter-Vectorvoltmeter.DisplayandRecording:X-YRecorders-MagneticTaperecorders-StorageOscilloscope-cathoderayoscilloscope.	15
v	Analysis: Wave Analyzers-Audio frequency Wave analyzer- Harmonic distortion analyzers-Resonant harmonic distortion analyzer-Heterodyne harmonic distortion analyzer- Fundamental suppression harmonic distortion analyzer- Spectrum analyzer.	15
Text B	ook :	
	Electrical & Electronics Measurement & Instrumentation, A.K. Saw	hney, Dhanpat
	Rai and sons. (All Units)	
2.	Modern Electronic Instrumentation, H. S. Kalsi, 2010, 3rd Edition	- Tata McGraw
	Hill.	
Refere	nce Books	
1.	Modern Electronic Instrumentation and Measurement Technique	s , A.O. Hefnick
	and W.D. Cooper., Prentice Hall India Publications.	
	Introduction to Instrumentation and Control, A.K. Ghosh-Pren	tice Hall India
	Publications	

Category	Course Type	Course Code	Course T	itle	Contact Hours	Credit
Part –	Core:	21AEP01	CYBER SEC	URITY	5	2
	ours per se ours per wo					
Year		Semester	Internal Marks	Extern Marks		otal Marks
2021		II	50	50		100
	The aim is The aim a		students, the basic	es of cyber s	security and	I the security
Course Ou	itcome: On	the successful	completion of the	e course, stu	dents will b	be able to
COs						Knowledge Level (RBT)
CO1	Recall the basic concepts of information security and its types K1					
CO2	Gain know measures	vledge on cyber	space issues and	cyber secur	ity	K2
CO3	Identify va	rious risks and	threats in cyber s	pace		K3
CO4	Apply secu social med	•	to prevent ourselv	es from thre	eats in	K4
CO5	Compare v	various social n	nedia, security issu	ues and mea	asures	K5
CO6	-	• •	platform for peopl professional conce		t each	K6
K1 – Rem K5 – Eval	ember;		and; K3 – App		K4 – Ana	lyze;
	CO-PSO	MAPPING (COURSE ARTIC	CULATION	N MATRIX	()

PSOs COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
C01	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	9	9

CO5	9	9	3	3	3	9)	3		
CO6	9	9	3	3	3	3	;	3		
Total Contribut of COs t PSOs		54	42	42	36	43	48			
Weighte Percentag COs Contribut to PSOs	e of ion									
	correlation: 0			Low correl	ation; 3 – N	Aediur	n corr	elation;		
			SYLLA	BUS						
Unit		(Course Cor	ntent				uctional lours		
I	Information SecurityHistory of Information Security - Need for Security-Types ofSecurity: Physical Security -Network Security -PersonalSecurity -Operation Security -Communication Security -Information Security Threats.							5		
п	Introduction to Cyber SecurityCyber Security: Objectives- Roles- Differences betweenInformation Security and Cyber Security.Principles: Confidentiality- Integrity – Availability							5		
III	Risks & VulnerabilitiesRisk Meaning: Risk Management –Problems of MeasuringRisk -Risk Levels-Risk Analyzes-Risk Assessment –Responseto Risk Terminology- Threats: Components of Threats-Typesof Threats-Vulnerabilities:Computing SystemVulnerabilities–HardwareVulnerabilities-Data Vulnerabilities-Human Vulnerabilities.						5			
IV	Social medi Introduction Security iss	to social		-				5		

	Twitter-Preventive and control measures.	
	Case study	
v	Impact of social media: Education -Business- Banking-Mobile –Human Life- Present generation-Indian scenario.	4
Web I	References:	
1.	https://m.youtube.com/watch?v=o6pgd8gLFHg	
2.	https://m.youtube.com/watch?v=3rl4ZjZpcHU	
3.	https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beg	ginners
4.	https://5social media security risk and how to avoid them.html	
5.	https://10 cyber security twitter profiles to watch.html	
6.	https://cyber security in banking 4 trends to watch in 2017.html	
7.	https://gmail hacking security tips-indian cyber security solutions.htm	ıl
8.	https://why social media sites are the new cyber weapons of.html	
9.	EBook: A complete guide to Staying Ahead in the Cyber Security Gar	ne

Catagony	Course	Course	Course Title		Contact	Credit												
Category	Туре	Code			Hours	Creun												
III	Core : XIV	21DUD14 Spectroscopy																4
Contact he	ours per sem	ester: 60																
Contact he	ours per wee	k: 4																
Veer	C.		Internal	Extern		Catal Marka												
Year	50	emester	Marks	Marks		Fotal Marks												
2021		III	50	50		100												
Preamble: The aim is to provide the students, the skills and capability for formulating and analyzing chemical compounds using Atomic and Molecular Spectroscopy																		
	Course Outcome: After completion of the course, the learners will be able to																	
Course Ot	itcome: After	completion	of the course, the	learners will	i de able t	C												

Cos			Co	ourse Outc	ome			nowledge vel (RBT)
CO1	outl	ine the Ato	mic Specti	a and Stud	y the micro	wave spect	ra	K1
CO2	expl	ain the con	by	K2				
CO3	appl	apply the concepts to understand the properties of molecules						К3
CO4		analyze the properties of atoms and molecules using different K4 types of Spectroscopy						
CO5		choose appropriate spectroscopy to analyze atoms and K5 molecules						
CO6		elop spectru concepts	um of mole	ecules of di	fferent type	es by applyi	ng	K6
K1 – Rem K5 – Eval	uate	; K6- Crea			- Apply;		– Analyze	2;
			APPING (0	COURSE A	ARTICUL	ATION MA	ATRIX)	
CO – PSC) Maj	oping	1					
PSOs Cos		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1		9	9	9	9	9	9	9
CO2		9	9	9	9	3	3	3
CO3		9	9	3	3	3	1	3
CO4		9	9	3	3	3	1	3
CO5		9	3	3	1	3	1	1
CO6		9	3	3	1	1	1	1
Total Contribut of COs t PSOs		54	42	30	26	22	16	20

Weighte	d							
Percenta	ge							
of COs	3							
Contribut	tion							
to PSO:	to PSOs							
Level of c	orrelation: 0 – No correlation; 1 – Low correlation; 3 – Mediur	n correlation;						
9- High co	orrelation between COs and PSos							
	SYLLABUS							
Unit	Course Content	Instructional						
Umt	Course Content	Hours						
	Atomic Spectroscopy							
	Atoms in External Magnetic Fields -Normal Zeeman Effect-							
	Anomalous Zeeman Effect-Magnetic Moment of Atom -							
	Lande's g Formula- Paschen Back Effect- Stark Effect-							
I	Hyperfine Structure of Spectral Lines - Spectra of Hydrogen	15						
-	and Alkali Atoms .							
	Microwave Spectroscopy							
	Experimental Methods-Theory of Microwave Spectra of							
	Linear, Symmetric Top Molecules -Hyperfine Structure							
	IR Spectroscopy							
	Practical Aspects-Theory of IR Rotation Vibration Spectra of							
	Gaseous Diatomic Molecules- Applications-Basic Principles of							
	FTIR Spectroscopy.							
II	Raman Spectroscopy	15						
	Classical and Quantum Theory of Raman Effect- Rotation							
	Vibration Raman Spectra of Diatomic and Polyatomic							
	Molecules-Applications-Laser Raman Spectroscopy.							
III		15						

	Fluorescence & Phosphorescence Spectroscopy	
	Electronic Excitation of Diatomic Species-Vibrational	
	Analysis of Band Systems of Diatomic Molecules-Deslander's	
	Table-Intensity Distribution-Franck Condon Principle-	
	Rotational Structure of Electronic Bands-Resonance and	
	Normal Fluorescence - Intensities of Transitions-	
	Phosphorescence-Population of Triplet State -Experimental	
	Methods-Applications of Fluorescence and Phosphorescence	
	NMR Spectroscopy	
IV	Quantum Mechanical and Classical Description - Bloch Equations - Relaxation Processes-Experimental Technique- Principle and Working of High Resolution NMR Spectrometer- Chemical Shift	15
V	ESR Spectroscopy Basic Principles-Experiments-ESR Spectrometer-Reflection Cavity and Microwave Bridge-ESR Spectrum-Hyperfine Structure	15
Text boo	ks:	

1. Molecular Structure and Spectroscopy - G.Aruldhas, 2011, PHI Learning Private Limited.

Reference Books:

1.Fundamentals of Molecular Spectroscopy - C. N. Banwell, 1994, Tata McGraw Hill Publishing Company Limited.

Category	Course Type Core :	Course Code 21PHP15	Course T Nuclear Physic		Contact Hours		Credit	
ш	XV		Elementary 60 Particles		0	4		
Contact h	ours per se	nester: 60			1			
Contact h	ours per we	ek: 4						
Year		Semester	Internal	Externa	al	Т	otal Marks	
I cai	,	Semester	Marks	Marks	5	10		
2021		III	50	50			100	
Preamble :	The aim is	to provide the	students, the conc	cepts of Nuc	leus a	nd ele	mentary	
particles an	nd to develo	p skills to find	the binding energ	y, spin and	parity	value	s for various	
elements.	nd to develo	p skills to find	the binding energ	y, spin and	parity	value	s for various	
elements.			the binding energ				s for various	
elements.		er completion	of the course, the				s for various Knowledge	
elements.		er completion				ole to		
elements.	utcome: Aft	er completion	of the course, the	learners wil	l be at	ole to	Knowledge	
elements. Course Or Cos	utcome: Aft	er completion Co	of the course, the	learners wil	l be at	ole to	Knowledge Level (RBT)	
elements. Course Or Cos	recall the p	er completion Co roperties of nu ction mechanis	of the course, the ourse Outcome	learners wil decay, fusion particles	l be at	ole to	Knowledge Level (RBT)	
elements. Course Or Cos CO1	recall the p fission read	er completion Coroperties of nu ction mechanis concepts of r	of the course, the ourse Outcome acleus, radioactive sm and elementary	learners wil decay, fusion particles ecay process	l be at		Knowledge Level (RBT) K1	
elements. Course Or Cos CO1	recall the p fission read explain the particles, n	er completion Corroperties of nu- ction mechanis concepts of ru- uclear models.	of the course, the ourse Outcome acleus, radioactive sm and elementary nuclear theories, do	learners wil decay, fusion particles ecay process nd nuclear n	l be at		Knowledge Level (RBT) K1	
elements. Course Or Cos CO1 CO2	recall the p fission read explain the particles, n classify the	er completion Corroperties of nu etion mechanis concepts of r uclear models	of the course, the ourse Outcome acleus, radioactive sm and elementary nuclear theories, do , fusion reactors an	learners wil decay, fusion particles ecay process nd nuclear n n, forms of	l be at on, s of nodels		Knowledge Level (RBT) K1 K2	

	force, properti	es of radioa	active decay	ys, selection	n rules, mag	gic				
	numbers, thermal reactors and for particle physicsevaluate the nuclear properties, decay process, nuclear reaction									
					nuclear reac	tion	K5			
	mechanisms a	echanisms and basic conservation laws								
	elaborate the h	• •	-				K6			
	interactions and radioactive decay, nuclear energy levels and									
	nuclear models									
	mber; K2		and; K3	- Apply;	K4	– Analyze	;			
K5 – Evalu	ate ; K6- Cre	ate								
	CO-PSO MA	APPING (COURSE A	ARTICUL	ATION M.	ATRIX)				
CO – PSO	Mapping									
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7			
Cos										
CO1	9	9	9	9	9	9	9			
CO2	9	9	9	9	3	3	3			
CO3	9	9	3	3	3	1	3			
CO4	9	9	3	3	3	1	3			
CO5	9	3	3	1	3	1	1			
CO6	9	3	3	1	1	1	1			
Total										
Contributi	on 54	42	30	26	22	16	20			
of COs to		12	50	20		10	20			
PSOs										
Weighted										
Percentag	e									
of COs										
Contributi	on									
to PSOs										

SYLLABUS							
Unit	Course Content	Instructiona Hours					
Ι	Nuclear Properties Nuclear Structure- Distribution of Nuclear Charge-Nuclear Mass-Mass Spectroscopy-Mass Spectrometer-Theories of Nuclear Composition (proton-electron, proton-neutron)- Tensor Force-Static Force-Exchange Force- Nuclear energy levels - Nuclear angular momentum, parity, isospin – Nuclear magnetic dipole moment – Nuclear electric quadropole moment - Ground state of deuteron	15					
II	 Radioactive Decays - Alpha Decay Properties of α Particles-Gamow''s Theory of α Decay-Geiger Nuttal Law- α Ray Energies-Fine Structure of α Rays- α Disintegration Energy-Long Range α Particles. Beta Decay Properties of β Particles-General Features of β Ray Spectrum- Pauli''sHypothesis-Neutrino Hypothesis-Fermi''s Theory of β Decay-Forms of Interactions and Selection Rules. Gamma Decay: Absorption of γ Rays by Matter-Interaction of γ Rays with MatterMeasurement of γ Ray Energies-Internal Conversion. 	15					
III	Nuclear Reactions and Nuclear Models Reciprocity theorem– Breit-Wigner formula – Resonance theory – Liquid drop model – Shell model Evidences for shell model Magic numbers Harmonic oscillator – Square-	15					

	well potential Spin-orbit interaction – Collective model of a	
	nucleus.	
IV	reactors – Thermal reactors – Homogeneous reactors – Heterogeneous reactors – Basic fusion processes Characteristics of fusion – Solar fusion – Controlled fusion reactors.	15
V	Particle Physics Nucleons, leptons, mesons, baryons, hyperons, hadrons, strange particles - Classification of fundamental forces and elementary particles – Basic conservation laws – Additional conservation laws: Baryonic, leptonic, strangeness and isospin charges/quantum numbers – Gell-mannNishijima 23 formula - Invariance under charge conjugation (C), parity (P) and time reversal (T) – CPT theorem Parity nonconservation in weak interactions – Eight-fold way and supermultiplets – SU(3) symmetry and quark model.	15
Text 1		ew Delhi.(Unit
2.	II,III) Nuclear Physics - D.C. Tayal, 2001, Himalaya Pub. House, New Del	lhi. (Unit I-V)

Category	Course	Course	Course Title	Contact	Credit
----------	--------	--------	--------------	---------	--------

	Туре	Code			Hours	
	Core :	21PHP16	Electromagnetic	Field		
III	XVI		Theory		60	4
Contact h	ours per sen	nester: 60				
Contact h	ours per we	ek: 4				
\$7			Internal	Externa		
Year	2	emester	Marks	Marks		'otal Marks
2021		III	50	50		100
Preamble:	The aim is	to provide the	students, the theory	ry for the fie	lds produc	ced by
stationary a	and moving	charges and cl	narged systems and	d hence the j	propagatio	on of
electromag	netic fields.					
Course Ou	itcome: Afte	er completion	of the course, the	learners will	be able to)
Car			Knowledge			
Cos		C	ourse Outcome			Level (RBT)
CO1	recap the ba	axwell's	K1			
	equation					
CO2	recognize th	ne principles b	behind electrostation	es in macros	copic	K2
	media and I	Electromagnet	tic potentials			
CO3	apply differ	ent formulae	in the field of elec	trostatics, m	agneto	К3
	statics and a	elativistic ele	ctrodynamics			
CO4	infer innova	ative ideas in t	the field of electro	magnetic the	eory	K4
CO5	examine the	e effectiveness	s of different laws	in electroma	agnetic	K5
	problems w	ith the help of	f electrodynamic p	otentials		
CO6	Originate n	ew theories ar	nd innovations bas	ed on		K6
	electromag	netic field the	ory			
K1 – Rem	ember; l	K2 – Underst	and; K3 – App	ly;	K4 – Ana	lyze;
K5 – Eval	uate ; K6- C	reate				
	CO-PSO	MAPPING (COURSE ARTIC	CULATION	MATRIX	K)
<u> </u>						

CO – PSO	Mapping							
PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSC)6	PSO7
CO1	9	9	9	9	9	9		9
CO2	9	9	9	9	3	3		3
CO3	9	9	3	3	3	1		3
CO4	9	9	3	3	3	1		3
CO5	9	3	3	1	3	1		1
CO6	9	3	3	1	1	1		1
	54 1 je on			26	22 ation; 3 – N	16 Iediun		20 relation;
			SYLLA	BUS				
Unit Course Content								ructional Hours
Ι	Electrostatio Coulomb's	cs law-Gauss	s law-di	fferential	and int	egral		15

	representation-Electric field-Electric potential-Method of images-Multipole expansions.	
Π	Electrostatics in macroscopic media Potential and Field due to an Electric Dipole-Dielectric Polarization-External Field of a Dielectric Medium-Gauss' Theorem in a Dielectric-Electric Displacement Vector D- Linear Dielectrics-Relations connecting Electric Susceptibility χ_e , Polarization P, Displacement D and Dielectric Constant- Boundary Conditions of Field Vectors-Molecular Field- Clausius Mosotti Relation for Non-Polar Molecules- Electrostatic Energy and Energy Density	15
ш	MagnetostaticsBiot-Savart Law - Statement-Lorentz Force Law - Definitionof B-Divergence and Curl of B Magnetic Scalar Potential(derivation of expression only)-Equivalence of Small CurrentLoop and Magnetic Dipole-Magnetic Vector Potential(derivation of expression only).	15
IV	Electromagnetics Equation of Continuity-Displacement Current-Derivation of Maxwel's Equations - Physical Significance - Poynting Vector - Momentum in EM Field - Electro Magnetic Potentials- Maxwell's Equations in terms of EM Potentials - Lorentz Gauge-Coulomb Gauge - Boundary Conditions at Interfaces.	15
V		15

Relativistic ElectrodynamicsFour Vectors-Transformation Relation for Charge and CurrentDensities for Electromagnetic Potentials-Covariance of FieldEquations in terms of Four Vectors-Covariant Form of Electricand Magnetic Field Equations-Covariance of ElectromagneticField Tensor-Covariant Form of Lorentz Force Law.

Text books:

- Electromagnetic Theory, Chopra & Agarwal , 2016, K. Nath & Co,Educational Publishers,6th Edition. [ISBN: 978-81-924088-9-7] (Unit I-V)
- Electromagnetic Theory & Electrodynamics Sathya Prakash, 2004, Kedar Nath Ram Nath & co, Publishers New Edition.(Unit II, III, V)

Category	Course Type	Course Code	Course T	ïtle	Contac Hours	('redif			
Ш	Core : XVII	21PHP17	Comprehension in Physics - III (MCQ from Part-III courses / Online exam)		-	1			
Contact he Contact he									
Year	ear Semester		Externa Marks	-	Total Marks				
2021		III	-	100		100			
Spectrosco and to mot	Preamble: To provide a clear understanding of the courses Atomic and Mol Spectroscopy, Nuclear Physics & Elementary Particles and Electromagnetic and to motivate the students to comprehend the concepts of the syllabi. Course Outcome: After completion of the course, the learners will be able t								
Cos	Course Outcome					Knowledge Level (RBT)			
CO1		Incite the concepts, principle and formulae of the courses K1 elementary particles, their spectroscopy and electromagnetic							

	properties	
CO2	elaborate the information on elementary particles and magnetic field theories	K2
CO3	apply the formulae and laws from classical mechanics into electromagnetic field theory and elementary particles and their spectroscopy	K3
CO4	 examine & categorize the concepts of : study the microwave spectra for various types of molecules learn about the various nuclear models and elementary particles understand the laws of magnetostatics and electrostaics 	К4
CO5	evaluate the various parameters of the courses Atomic and Molecular Spectroscopy, Nuclear Physics & Elementary Particles and Electromagnetic Field Theory	K5
CO6	predict the various parameters of the courses Atomic and Molecular Spectroscopy, Nuclear Physics & Elementary Particles and Electromagnetic Field Theory	K6
	nember; K2 – Understand; K3 – Apply; K4 – Ana Iluate ; K6- Create	lyze;

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	3	3	3	3
CO4	9	3	3	1	1	3	3
CO5	9	3	3	1	1	1	3
CO6	9	3	1	0	0	0	1
Total Contribution	54	36	34	23	17	19	16

of COs to							
PSOs							
Weighted							
Percentage							
of COs							
Contribution							
to PSOs							
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;							
9- High correlation between COs and Pos							

Category	Course Type	Course Code	Course T		Contact Hours	t Credit
III	Core : XVIII	21PHP18	Institutional Trai	ning	-	1
	ours per sen ours per we					
Year	S	emester	Internal Marks	Externa Marks	,	Total Marks
2021		III	100	-		100
	-		deeper knowledg			
Institutiona	l training –	creating a opp	ortunity for the stu	udents		
Course Ou	itcome: Afte	er completion	of the course, the	learners wil	l be able t	0
Cos			Knowledge Level (RBT)			
CO1	•	e problems rticle ship Tra	& solutions rela	ited to Ins	titutional	K1
CO2			involved in concession of the second		projects	K2
CO3	Solve the p	roblems in co	oncerned project v for both Institution	vorks & also		К3
CO4	Examine d	• 1	of problems,prin of concerned proj	T . T	erimental	K4
CO5	Design new machines, principles & applications for future K5 generations& evaluate different issues related to Science & Technology.					
CO6	CO6Invent new technology and use it in variour applicationK6					
K1 – Rem K5 – Evalu	ember; l uate ; K6- C	K2 – Underst Freate	and; K3 – App	oly;	K4 – An	alyze;

PSOs COs		PSC)1	PSO2	PSO3	PSC	94	PSO	5	PSO6	PSO	
CO1		9		9	9	9		9		9	9	
CO2		9		9	9	9		9		9	9	
CO3	CO3 9			9	9	9		9		9	9	
CO4		9		9	9	9		9		9	9	
CO5		9		9	9	9		3		3	3	
CO6		9		3	3	3		3		3	3	
Total Contribut of COs t PSOs	-	54		48	48	48		42		42	42	
Weighte Percentag of COs Contribut to PSOs Level of co	ge ion	ation:	<u>1 – 0</u>	No correla	ntion; 1 – L	ow cor	relatio	0n; 3	- M	edium c	correlation	
)- High co	rrela	ation b	etwe	en COs a	nd PSos							
Category		ourse 'ype		Course Code	Co	urse T	itle			ntact ours	Credit	
II	Cor XE		21F	PHP19	Advanced Practical-		es		1	35	1	
Contact he Contact he		-			I							
Year		5	Seme	ester	Internal Marks			terna Iarks		Tot	Total Marks	
2021 III & IV				z IV	50			50			100	
	ysics	experi	men	ts, learn al	students be oout handlin	-			-			

Cos			Co	ourse Outc	come				owledge el (RBT)		
CO1	rem	nember the	formulae a	nd properti	es for differ	ent experin	nents		K1		
CO2		aware of pr periments			K2						
CO3		k different eriment			K3						
CO4	-	lore the ca ween differ			K4						
CO5	asso	ess and cor	npare the ef	ffectiveness	s of each ex	periment			K5		
CO6	dev	elop new i	t		K6						
	C	; K6- Cre D- PSO M		- 	– Apply; ARTICUL	ATION M	– Anal ATRIX				
$\frac{\text{CO} - \text{PSO}}{\text{PSO}_{\text{CO}}}$		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO	6	PSO 7		
C01		9	9	9	9	9	9		3		
CO2		9	9	9	9	9	9		3		
CO3		9	9	3	3	9	9		1		
CO4		9	9	3	3	3	3		1		
CO5		9	9	3	3	3	3		1		
CO6		3	3	0	3	0	3		0		
Total Contribut of COs t PSOs		48	48	27	30	33	36	36 9			
Weighte Percentag COs											

Contribution to PSOs Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PSOs

	SYLLABUS								
S.No	Course Content	Instructional Hours							
1	e/m-Magnetron Method								
2	Compressibility of a Liquid-Ultrasonic Method								
3	Arc Spectra-Constant Deviation Spectrograph-Copper, Iron & Brass								
4	Michelson Interferometer- λ , $d\lambda$ and Thickness of Mica Sheet	•							
5	Susceptibility-Guoy and Quincke"s Method								
6	Hall Effect and its application	•							
7	e/m-Zeeman Effect	•							
8	B-H Curve-Solenoid	•							
9	B-H Curve-Anchor ring	135							
10	Double Slit-Wavelength Determination								
11	G.M Counter-Characteristics								
12	Kelvin"s Double Bridge-Determination of Very								
13	LowResistance & Temperature Coefficient of Resistance He-Ne Laser determination								
14	Matlab Programming-Radioactive Decay								
15	Matlab Programming-Numerical Integration								
16	Matlab Programming-Double Integration								
17	Matlab Programming-Solution of Ordinary Differential Equations								

18	Matlab Programming-Computer Simulation of Equations of Motion for a System of Particles	
19	Matlab Programming-Computer Simulation of 1-D and 2-D Lattice Vibrations	
20	Matlab Programming-Computer Simulation of Kronig- Penney Model	
21	Matlab Programming-Numerical simulation of Wave- Functions of Simple Harmonic Oscillator	
22	Matlab Programming-Simulation of Wave Functions for a Particle in Critical Box	
23	Matlab Programming-Solution of Diffusion Equation	

Category	Course Type	Course Code	Course Title		Contact Hours	Credit	
III	Core : XX	21PHP20	General Electronics Practical-II		135	1	
	ours per se ours per wo	mester: 135 eek: 5					
Year		Semester	Internal Marks	Externa Marks	· ,	Fotal Marks	
2021		III & IV	50	50		100	
Operational amplifier and to gain the practical hands on experience of programming the microprocessor and also gain knowledge on interfacing of different peripherals to microprocessor Course Outcome: After completion of the course, the learners will be able to							
Cos		Course Outcome			Knowledge Level (RBT)		
CO1	recall the working principle of Operational Amplifier, IC 555 and microprocessor				K1		
CO2	elucidate the functioning of circuits constructed using K2 operational amplifier and IC 555						

CO3	perform analog to digital conversion and digital to analog conversion using operational amplifier	К3
	perform interfacing for waveform generator, stepper motor, 7 segment LED display Hex keyboard musical tone generator using microprocessor	
CO4	analyze the mathematical operations performed by circuits constructed using operational amplifier	K4
CO5	determine the frequency of astable multivibrator and output voltage in simultaneous adder and subtractor execute programs using microprocessor	К5
CO6	construct the circuits to perform mathematical operations, measurement of temperature and light intensity using operational amplifier	K6

K1 – Remember;	K2 – Understand;	K3 – Apply;	K4 – Analyze;
K5 – Evaluate ; K6-	· Create		

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
C01	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0
Total Contributio n of COs to PSOs	48	48	27	30	33	36	9
Weighted Percentage							

of COs Contributio n to PSOs						
Level of corre		,	ow correla	tion; 3 – N	ledium cor	relation;

9- High correlation between COs and PSos

SYLLABUS ANY TEN(10) EXPERIMENTS ONLY EXAMINATION AT THE END OF SECOND SEMESTER

S.No	Course Content	Instructional Hours
1	Op-Amp: Simultaneous Addition & Subtraction	
2	Op-Amp: V to I & I to V Converter	-
3	Op-Amp: Circuits Using Diodes-Half Wave, Full Wave, Peak Value, Clipper, Clamper	-
4	Op-Amp: Log and Antilog Amplifier	-
5	Op-Amp Comparator-Zero Crossing Detector, Window Detector, Time Marker	-
6	Op-Amp: Instrumentation Amplifier-Temperature Measurement	
7	Op-Amp: Instrumentation Amplifier-Light Intensity- Inverse Square Law	135
8	IC 555 Timer Application-Monostable, Linear & Astable	
9	A/D Converters-Any One Method	
10	D/A Converters-Binary Weighted Method	
11	Microprocessor: LED Interfacing	
12	Microprocessor: Stepper Motor Interfacing	
13	Microprocessor: Traffic Control Simulation	1
14	Microprocessor: ADC Interface-Wave Form Generation	1
15	Microprocessor: Hex Keyboard Interfacing	1

16	Microprocessor: Musical Tone Generator Interface	
25	MATLAB Programming-Mean, Median & Standard Deviation	
26	MATLAB Programming-Curve Fitting & Interpolation	
27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	
31	He-Ne Laser – Thickness of Wire	

Category	Course Type	Course Code	Course T	ïtle	Contact Hours	Credit				
ш	Core : XXI	Open Elective	For students of other PG programmes ENVIRONMENTAL PHYSICS		programmes		programmes ENVIRONMENTAL		45	3
	ours per se ours per wo									
Year	5	Semester	Internal Marks	External , Marks		otal Marks				
2021		III	50	50		100				
Environme	Preamble: he aim is to provide the students to gain knowledge and understanding the Environmental Pollution and ControlTechniques.Course Outcome: After completion of the course, the learners will be able to									
Cos				Knowledge Level (RBT)						
CO1	recall the basic terms involved in Environmental Pollution and K1 Pollution Control Techniques			K1						
CO2	outline the basic Principles involved in Pollution ControlK2Techniques & Conservation of renewable & non renewableenergy resources									

CO3	apply Pollution Control Techniques to reduce pollution	К3		
CO4	analysethe different types of Pollution	K4		
CO5	evaluate control measures for different types of pollution	K5		
CO6	create new techniques to control Pollution	K6		
K1 – Remember;K2 – Understand;K3 – Apply;K4 – Analyze;K5 – Evaluate ; K6- Create				

CO – I SO Mapping								
PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSC) 6	PSO7
CO1	9	9	9	9	9	9		9
CO2	9	9	9	9	3	3		3
CO3	9	9	3	3	3	1		3
CO4	9	9	3	3	3	1		3
CO5	9	3	3	1	3	1		1
CO6	9	3	3	1	1	1		1
Total Contributio n of COs to PSOs	54	42	30	26	22	16	5	20
Weighted Percentage Image: Constribution of COs Image: Constribution of Constribution of COs Image: Constribution of Constrinting Constring Constribution of Constribution of Constri								
SYLLABUS								
Unit	Unit Course Content Instruction Hours							

Ι	Introduction - Environmental pollution – Sources of pollution – types of pollutants – Carbon Monoxide, Nitrogen Oxides, Sulphurdioxide – Particulates – Toxic Chemicals in the Environment - Effects of pollution – Preventive Measures	9	
II	of pollution.Introduction - Environmental pollution - Sources ofpollution - types of pollutants - Carbon Monoxide, NitrogenOxides, Sulphurdioxide - Particulates - Toxic Chemicals inthe Environment - Effects of pollution - Preventive Measuresof pollution.	9	
III	Pollution Control Techniques - Solid Waste Management - Solid Waste Disposal – Solid Waste Ocean Dumping – Solid Waste Management by Bio Technology – Organic Waste Management by composting process.	9	
IV	Waste Water Treatment – Water quality Parameters – Sludge Treatment – Reverse Osmosis – Water Reuse and Recycling – Domestic Water Treatment- Disinfection methods- UV Treatment and Ozonolysis.	9	
V	Natural Energy Sources – Renewable Energy Sources – Solar Energy , Natural gases ,Wind Energy and Tidal Energy – Non Renewable Energy Sources – Coal , Minerals and Petroleum products.	9	
Text Books : 1. Environmental Chemistry (7 th Edition by A.K. DE) New Age International Publishers. Environmental Studies Published by Bharathiar University.			

Category	Course Type	Course Code	Course Title		Contact Hours	Credit	
Ш	Core : Elective XXII	21PHP21A	Biomedical Instrumentation 221A		60	4	
	ours per se ours per w						
Year		Semester	Internal Marks	Externa Marks	l T	otal Marks	
2021		III	50	50		100	
		1	e students, the work	king principl	es of medi	cal	
		cs behind the i		1 11	h h 1 - 4 -		
Course Ol	itcome: Af	ter completion	of the course, the	learners will	be able to		
Cos		Course Outcome Ki Le					
CO1	recall ultrasonic resonance, Magnetic intensity, brain ,the				ne	K1	
	central nervous system, Transducer, and Doppler Ultrasound.						
CO2	discuss ele	ectroencephalo	gram, ENT and op	hthalmic		K2	
	instrument	ts, Magnetic R	esonance and Imag	ging			
CO3	apply the o	components of	a typical laser syst	tem in		К3	
005		apply the components of a typical laser system inK3ophthalmology.K3					
CO4	analyze the	e Recording of	f ECG waves, opth	amology,		K4	
			nagnetic resonance		,		
	magnetic r	elaxation and	MRI parameters.				
CO5	evaluate the techniques behind ultrasonography, ultrasoundK5scanning, retinoscopy and Keratometer.K5					K5	
	<u></u>						
CO6	modify the characteristics of the normal ECG and transducer K6 design.					K6	

K1 – Remember;	K2 – Understand;	K3 – Apply;
K5 – Evaluate ; K6-		

CO – PSO Mapping

PSOs Cos	PSOI	PSO2	PSO3	PSO4	PSO5	PSO)6	PSO7
CO1	9	9	3	3	9	9		9
CO2	9	9	9	1	9	9		9
CO3	9	9	3	1	9	9	1	9
CO4	9	9	1	1	9	9		9
CO5	3	3	1	1	3	3		3
CO6	3	3	1	1	3	3		3
Total Contribut n of COs PSOs	T 4	42	18	08	42	42	2	42
Weighted Percentag of COs Contribut n to PSO	ge io							
	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PSos							relation;
			SYLLA	BUS				
Unit		C	Course Con	tent				ructional Hours
I	Electrophysiological measurements: Cell potential genesis –Nernst relation – cell in resting state – action potential from acell – the resultant externally recorded action potential.Electrocardiography(ECG): Electrocardiographic planes –Einthoven triangle – bi polar and uni-polar limb lead frontalplane ECG measurements – ECG leads – precordial leads –relationship between various leads – recording of ECG waves							

K4 – Analyze;

	and measurements (block diagram)			
п	Electroencephalogram: The brain and the central nervous system – the brain and its parts – cell potential and action – the characteristics of the normal ECG – the input electrodes – electrode construction and connections – EEG recording instruments (explanation with block diagram) – EEG wave analysis – a typical EEG machine specifications and requirements.	12		
III	ENT and ophthalmic instruments: Audiometry – Bekesy audiometer system – instruments used in opthamology - opthalmoscope – retinoscopy – Keratometer – intra ocular pressure – ultra sound in ophthalmology – components of a typical laser system in ophthalmology.	12		
IV	Ultrasonography – advantages – B scan – ultrasound scanning– ultrasonic system – probes for ultrasound – Dopplerultrasound (basic aspects) – transducer design – demodulationmethods.			
v	Magnetic Resonance and Imaging (MRI):Magnetic intensity – magnetic resonance phenomena – the magnets – magnetic relaxation and MRI parameters – pulse sequences.12			
	at book of Medical Instruments, S.Anandhi, 2005, New Age aal (P) Ltd., Publishers, 1st Edition.(Units I-V)			

3.	Design and Development of Medical Electronic
	Instrumentation, David Prutchi, Michael Norris, Wiley -
	Interscience.
4.	Bio medical instrumentation, M. Arumugam, 2002,
	Anuradha Publications. [ISBN: 818772112X]

Category	Course Type	Course Code	Course Title		Cont Hou		Credit						
ш	Core : Elective XXII	21PHP21B	THIN FILM PHYSICS		AND CRYSTAL		AND CRYSTAL		AND CRYSTAL 6		60)	4
	ours per se ours per we												
Year	\$	Semester	Internal Marks	Externa Marks		Τα	otal Marks						
2021		III	50	50			100						
Environme	ental Polluti	on and Control	students to gain k Techniques. of the course, the				nding the						
Cos		Co	ourse Outcome				Knowledge Level (RBT)						
CO1	recall the r of crystals	nature of thin fi	lms, deposition ar	nd Growth F	rocess		K1						
CO2	CO2 explain the concepts of different Deposition techniques, stages of film growth and various characterization Techniques of crystals K2					К2							
CO3	apply the required deposition technique of thin films and growth technique of crystalsK3					K3							
CO4	•	nalyze the thickness of the film and the growth and structure K4 of a crystal,					K4						
CO5			impurities in films and crystals,K5d grain size of thin films, Growth										

	Techniques of	of crystal						
CO6	Prepare a thin	n film, grow	a crystal					K6
K1 – Rem K5 – Eval	ember; K uate ; K6- Cr	2 – Underst eate	and; K3	- Apply;	K4	– Ana	alyze	;
	CO-PSO M	IAPPING (COURSE A	ARTICUL	ATION M.	ATRI	X)	
CO – PSO	Mapping							
PSOs COs	PSO1	PSO2	PSO3	PSO4	PSO5	PS	06	PSO7
CO1	9	9	9	9	9	9)	9
CO2	9	9	9	9	9	9)	9
CO3	9	9	9	9	9	3	}	3
CO4	9	9	9	3	3	1		1
CO5	9	3	3	3	3	1		1
CO6	9	3	3	3	3	1		1
Total Contribut n of COs PSOs	J 1	42	42	36	36	24	4	24
Weighter Percentag of COs Contribut n to PSO	ge tio 9s							
	orrelation: 0 -			ow correla	tion; 3 – N	Iediu	n cor	relation;
9- High co	orrelation bet	ween COs a						
			SYLLA	BUS				
Unit	Course Content Instructional Hours							
I	Nature of T	Preparation of Thin Film: 12 Nature of Thin Film-Deposition Technology-Distribution of Deposit-Resistance Heating- Thermal Evaporation-Flash 12						

	Evaporation	
п	Deposition techniques:Electron Beam Method-Cathodic Sputtering-Glow DischargeSputtering-Low Pressure Sputtering-Reactive Sputtering-RFSputtering-Chemical Vapour Deposition-Chemical Depositio	12
III	Thin Film Growth Process:Epitaxy-Thin Film Structure-Substrate Effect-Epitaxial Deposit- Film growth-five stages- Nucleation theories-Incorporation ofdefects and impurities in films Deposition parameters and grainsize-structure of thin films.Film Thickness:Mass Methods-Optical Method-Photometry-Ellipsometry-Interferometry-Other Methods- Substrate Cleaning.	12
IV	Crystallization Principles and Growth Techniques:Solution growth-Low and high temperatures solution growth- Slow cooling and solvent evaporation methods-Constant temperature bath as a crystallizer. Principle of gel technique- Various types of gel -Structure and importance of gel-Methods of gel growth and advantages-Melt technique- Czochralski growth- Vapor-phase growth-Physical vapor deposition- Chemical vapor deposition.	12
V	Characterization Technique:X-ray Diffraction (XRD)-power and single crystal-Fourier transform infrared analysis-FT-Raman analysis-Elemental dispersive x-ray analysis (EDA–X)-scanning electron microscopy (SEM)-UV-VIS Spectrometer-Photo luminance (PL)	12
Text Boo	 thin Film Fundamentals, A. Goswami, 2008, New Age, I (Units I – III) Elementary Crystal Growth, K. Sangawal, 1994, Shan Pu (Unit – IV) Crystal Growth and Processes, P. Santhana Ragavan, 	

P.Ramasamy, 2000, KRU Publications, Kumbakonam. (Unit IV, V)

4. **Crystal Growth Process**, J. C. Brice, 1996, John Wiley Publications, New York.

Reference Books:

- 1. **Hand book of Thin Films Technology**, L.I. Maissel and R. Clang, 1970, McGraw Hill.
- 2. Thin Films Process, J. L. Vossen and W. Kern, 1978, Academic Press.
- 3. The Materials Science of Thin Films, M. Ohring, 1992, Academic Press.
- 4. **Instrumental Methods of Analysis**, M. William and D. Steve, 1986, CBS publishers, New Delhi.
- Instrumental Methods of Analysis, H.H. Williard, L.L. Merritt, M.J. Dean, and F.A. Settle, Sixth Edition, 1986, CBS Publishers and distributors, New Delhi.

Category	Course Type	Course Code	Course Tifle		Contact Hours	Credit				
V	Proficie ncy Enhance ment	21PEP01	Laser and its applications (Self –Study) -						-	2
	ours per se ours per we									
Year	\$	Semester	Internal Marks	Externa Marks	··· · · · · · · · · · · · · · · · · ·	otal Marks				
2021		III	-	100		100				
available,it models of 1	Preamble: The Aim is to provide the students knowledge about Lasers, types of lasers available, its applications, in medical am=nd industrial lines and train them to fabricate new models of lasers.Course Outcome: After completion of the course, the learners will be able to									
Cos	Cos Course Outcome					Knowledge Level (RBT)				
CO1	recall the basic terms involved in the lasers				K1					
CO2	Explain the fundamental properties and conditions of different K2 lasers									
CO3	apply the l	apply the laser applications in material processing K3								

CO4	Analyze the different types of surface treatments, laser deposition of thin film, integrated circuit fabrication	K4				
CO5	Evaluate the needed method for the preparation of thin film.	K5				
CO6	Create a new technique for sample fabrications	K6				
	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate ; K6- Create					

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSC)6	PSO7
CO1	9	9	9	9	9	3		3
CO2	9	9	9	9	3	3		3
CO3	9	9	9	3	3	3		3
CO4	9	3	3	3	1	3		3
CO5	3	3	3	1	1	3		3
CO6	3	3	1	1	0	1		1
Total Contributi n of COs t PSOs	0	36	34	26	17	16	5	16
Weighted Percentag of COs Contributi n to PSOs	e							
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PSos							relation;	
	SYLLABUS							
Unit	Course Content							ructional Hours
I Fundamentals of Lasers: Electromagnetic radiation – energy levels – Interaction of						on of		-

	radiation and matter – fluorescence, absorption, stimulated emission. Laser materials:	
	population inversion – optical pumping- excitation by electron collisions – resonant transfer of energy – resonant cavity.	
	Properties of laser light: Line width – collimation – spatial profiles of laser beams –	
II	temporal behavior of Laser output – Q switched operation – mode locked operation – cavity dumping – coherence – radiance – focusing properties of Laser radiation – power.	-
ш	Gas Laser: He-Ne Laser – ionized gas laser – Molecular Laser (CO2) — Solid state lasers: Neodymium YAG Lasers- glass Lasers- Ruby Lasers.	-
	Semi conductor Laser:	
IV	semiconductor laser properties – Diode structures – diode doped solid state laser – Organic dye lasers – chemical lasers – X ray lasers – Tunable lasers	-
v	Applications: Interferometric distance measurement – velocity measurements – measurement of wire diameter – measurement of surface finish – particle diameter measurement – laser applications in material processing – laser welding – surface treatment – drilling, cutting and marking – laser deposition of thin film – integrated circuit fabrication.	-
Text book	:	
	 1.Laser Systems and Application, V.K.Jain, 2013, Narosa Pul Units) 1. Laser and Non-Linear Optics, B.B.Laud, 2011, New age 3rd Edition. 	·
Reference	Books:	

 Solid state Lasers: A graduate text, Walter Koechner Michael Bass, 1937, Springer. Laser & Optical Fibre Communications, P.sarah, 2008, I.K.Int publisher. Laser Physics, S. Mohan, V. Arjunan, M. Selvarani, M. Kanjanamala, 2012, MJP Publishers. 							
Category	Course Type	Course Code	Course T	itle	Con Ho		Credit
III	Core : XXIII	21PHP22	Condensed Matt	er Physics	9		4
	ours per se ours per we						
Year		Semester	Internal Marks	Externa Marks		l Total Marl	
2021		III	50	50	50		100
structure a		defects and to	students knowle o advance skills	-		-	•
Course Ou	itcome: Af	ter completion	of the course, the	learners wil	l be al	ole to	
Cos		Co	ourse Outcome				Knowledge Level (RBT)
CO1	D1remember the Crystal, lattice, Reciprocal lattice, Defects, HallK1effect, Semiconductors, Superconductor and magnetic materials.K1						
CO2	Describe the concept of Reciprocal, various defects and K2 different types of materials.						
CO3	calculate the reciprocal value of BCC and FCC thermal K3 conductivity of metals by suitable methods.						
CO4	-	rious various th uctor and mag	heories in Semicon netic materials	nductor, Die	electric	2,	K4

1. Semiconductor LasersI-Fundamentals, Edited by Eli Kapon, 1999,

Academic press.

CO5	classify the defects and dislocations in crystals and identify the defects by various methods.	K5
CO6	create new types of semiconductor, Superconductor and magnetic materials	K6
K1 – Ren K5 – Eva	nember; K2 – Understand; K3 – Apply; K4 – Ana luate ; K6- Create	alyze;

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSC)6	PSO7
CO1	9	9	9	9	3	3		3
CO2	9	9	9	9	3	3		3
CO3	9	9	9	9	3	3		3
CO4	9	9	9	3	3	3		3
CO5	9	9	3	3	1	1		1
CO6	9	3	3	3	9	9		3
Total Contribut n of COs t PSOs	JT	48	42	36	22	22	2	16
Weighted Percentag of COs Contribut n to PSO	ge io s							
	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos							
	SYLLABUS							
Unit	Course Content In							ructional Hours
Ι	I Reciprocal lattices: Vector development of reciprocal lattice – Properties of the							18

	$11u^{1}$ D $11u^{1}$ (11u) 10	
	reciprocal lattice – Reciprocal lattice to bcc lattice and fcc lattice.	
	Crystal Defects:	
п	Classification of defects - Points defect - The Schottky defect - The Frenkel defect -colour centers - F center - other colour centers - Production of colour centers by X rays and practice irradiation – Defect and energy state.Dislocations - Slip and plastic deformation - Shear strength of single crystals - Edge dislocation - Screw dislocation - Stress field around an edge dislocation	18
III	Lattice Vibrations, Semiconductors & Free Electron Theory: Vibrations of One Dimensional Diatomic Linear Lattice - Acoustic and Optical Branches Phonon State- Energy levels and density of orbitals – Motion in magnetic fields – Hall effect – Thermal conductivity of metals – Nearly free electron model –Electron in a periodic potential – Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration	18
IV	Dielectrics, Ferroelectrics and Superconductivity: Macroscopic electric field – Local electrical field at an atom – Polarizability – Clausius- Mossotti equation – Ferroelectric crystals – Polarization Catastrophe – Ferroelectric domains.Occurrence of Superconductivity – Meissner effect – Thermodynamics of Superconducting transition – London equation – Coherence length – BCS theory – Flux Quantization – Type-I and Type-II Superconductors –Josephson tunneling effect- DC and AC Josephson effect – SQUID	18
V	Magnetism: Quantum theory of Paramagnetism – Paramagnetic susceptibility of conduction electrons – Hund's rules- Kondo effect. Ferroelectric order – Curie point and the exchange integral – Temperature dependence of saturation magnetization – Magnons – Thermal excitation – Ferromagnetic order – Antiferromagnetic order – Antiferromagnetic Magnons – Ferromagnetic domains – Origin of domains – Coercive force and hysteresis.	18

Text Books :	
	 Introduction to Solid State Physics, Kittel. C. 2005, 8th Edition, Willey India (P) Ltd., New Delhi.(Units III, IV & V) Fundamentals of Solid State Physics, Saxena. B.S., R. C. Gupta and P. N. Saxena, 2012, 16th edition, Pragati Prakashan, Meerut.(Units I & IV) Solid State Physics, S. L. Guptha, V. Kumar, Ninth Edition, K. Nath & Co, Meerut.[ISBN:978-81-924088-
	7-3]
Reference Bool	ζ S:
1.	Solid State Physics, A.J. Dekkar, revised edition, 2000, Macmillan India Ltd., New Delhi.
2.	Principles of Solid State, Keer. H.V. 1st edition, 2002, New age international, New Delhi.
3.	Solid State Physics, Pillai S.O., 2005, 4th Edition, New Age International Publishers Ltd.

Category	Course Type	Course Code	Course Title		Contact Hours	Credit	
ш	Core : XXIV	21PHP23	Thermodynamics and Statistical Mechanics		90	4	
Contact hours per semester: 90 Contact hours per week: 6							
Year	:	Semester	Internal Marks	Externa Marks	, ,	Fotal Marks	
2021		III	50	50		100	
Preamble: The aim is to provide students a deeper knowledge and understanding of Thermodynamics, particle distribution and statistics							
Course Ou	Course Outcome: After completion of the course, the learners will be able to						

Cos	Course Outcome	Knowledge Level (RBT)				
CO1	recall the laws and principles in Thermodynamics and Statistical Mechanics	K1				
CO2	explain the link between statistics and thermodynamics, classical and quantum statistics and its applications	K2				
CO3	apply principles to explain Black body radiation, Gibbs paradox and Phase transition	K3				
CO4	categorize different type of statistics based on application	K4				
CO5	select appropriate statistics for the distribution of particles	K5				
CO6	predict the proper statistics to explain various phenomena in Thermodynamics	K6				
	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate ; K6- Create					
	unit, 120 Vitall					

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
C01	9	9	9	9	0	0	0
CO2	9	9	9	9	3	0	0
CO3	9	9	9	9	3	3	9
CO4	9	1	9	1	1	3	9
CO5	1	1	9	1	0	3	3
CO6	1	1	9	1	0	3	0
Total Contributio n of COs to PSOs	38	30	45	30	7	12	21
Weighted Percentage of COs Contributio n to PSOs							

	SYLLABUS	
Unit	Course Content	Instructional Hours
I	Thermodynamics and Radiation:Second law of thermodynamics- Entropy and Second law of thermodynamics- Entropy and Disorder- Thermodynamic Potential and Reciprocity relation- Thermodynamic Equilibria- Chemical Potential- Blackbody radiation- Planck's Radiation 	18
п	Basic Concepts of Statistical Physics:Phase space- Concept of ensemble- Micro canonical ensemble- Canonical ensemble- Grand Canonical ensemble- Density distribution in phase space- Liouvilles theorem- Postulate of equal apriori probability- Statistical equilibrium- Thermal equilibrium- Mechanical equilibrium-Particle equilibrium- Connection between Statistical and thermodynamic quantities.	18
III	Classical Distribution Law:Microstates and Macro states-Classical Maxwell-Boltzmann distribution law- Evaluation of constants, α and β- Maxwell's law of Distribution of velocities- Principle of equi-partition of energy- Gibbs paradox- Partition function and its correlation with thermodynamics quantities	18
IV	Quantum Statistics:Indistinguishability and quantum statistics- Statistical weight and apriori probability- Identical particle's and symmetry requirements- Bose Einstein's Statistics- Fermi Dirac Statistics- Results of three statistics- Thermodynamic interpretation of parameter's α and β - Blackbody radiation and Planck radiation- Specific heat of solids: Dulong and Petit's law- Einstein's Theory- Debye theory	18

V	Application of Quantum Statistics:Energy and pressure of ideal Bose Einstein gas- Bose Einsteincondensation- Liquid helium- Energy and pressure of idealFermi Dirac gas- Free electron model and electronic emission-Onsager relations- Fluctuation in Energy, Pressure, Volume &Enthalpy- The Ising model-Bragg William Approximation-One dimensional Ising model	18
Text Bool	ks : 1. Statistical mechanics, Gupta & Kumar, 2003, Pragati prakashan, Meerut. (All Units)	
Reference	e Books:	
	1. Elements of Statistical Mechanics, Miss Kamal Singh, S.P.Singh, 1999, S.Chand & Company Ltd	

Category	Course Type	Course Code	Course Title		Contact Hours	Credit		
III	Core : XXV	21PHP24	Electronic Communication Systems		90	4		
	Contact hours per semester: 90 Contact hours per week: 6							
Year	5	Semester	Internal Marks	Externa Marks	- ,	Fotal Marks		
2021		III	50	50		100		
types of me different ty	Preamble: The aim is to provide the students good understanding of radar systems and types of modulation used in electronic communication systems and the operation of different types of microwave devices.Course Outcome: After completion of the course, the learners will be able to							
Cos	Course Outcome					Knowledge Level (RBT)		
CO1	recall the propagation and properties of light, Antennas, Signals and Optical fibre					K1		
CO2		discuss the types of Antenna, the microwave generators, Radar Systems, Types of Modulation						

	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate ; K6- Create						
	transmission						
CO6	predict the rule for reducing Noise and Signal Loss in Antenna	K6					
	Fibres, Fibre Losses and Dispersion						
	Mathematical representation of FM, Step and Graded Index						
CO5	evaluate the Grounded Antenna, Ungrounded $\lambda/2$ Antenna, and	K5					
	Optical Fibre Propagation						
	Klystron, Magnetron, Travelling Wave Tubes, MASER, and						
CO4	analyze the Working of Directional High frequency Antennas,	K4					
	Interpret the application of optical fibres						
	Ionosphere, Radar in Radar Systems, Signals in Modulation,						
CO3	apply Light propagation in Sky ,Ground Wave Propagation and	K3					

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	9	9	9	9	9	9	9	
CO2	9	9	9	9	9	9	3	
CO3	9	9	9	9	9	3	3	
CO4	9	9	9	3	3	3	3	
CO5	9	9	3	1	1	1	3	
CO6	9	9	3	1	1	1	1	
Total Contributio n of COs to PSOs	54	54	42	32	32	26	22	
Weighted Percentage of COs Contributio n to PSOs								
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PSos								
SYLLABUS								

Unit	Course Content	Instructional Hours
I	Antennas & Wave Propagation :Terms and Definition -Effect of Ground on Antenna- Grounded $\lambda/4$ Antenna Ungrounded $\lambda/2$ Antenna Antenna Arrays-Broadside and End Side Arrays-Antenna Gain- Directional High Frequency Antennas-Sky Wave Propagation- 	18
п	Microwaves: Microwave Generation-Multicavity Klystron -Reflex Klystron- Magnetron-Travelling Wave Tubes (TWT) -MASER.	18
III	Radar System:Elements of a Radar System-Radar Equation-RadarPerformance Factors-Radar Transmitting Systems-RadarAntennas-Duplexers-Radar Receivers and Indicators-PulsedSystems-Other Radar Systems	18
IV	Communication Electronics: Analog and Digital Signals –Modulation –Types of Modulation-Amplitude modulation theory –Frequency spectrum of the AM wave –Representation of AM –Power relations in the AM wave –Generation of AM –Basic requirements-Description of frequency and phase modulation – Mathematical representation of FM –Frequency spectrum of the FM wave -Effects of noise on carrier.	18
V	Optical Fibres: Propagation of Light in an Optical Fibre- Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres-Fibre Losses and Dispersion-Applications.	18

Text Books :

- Electronic Communication System, George Kennedy & Davis, 1989, Tata McGraw Hill 4th edition.[ISBN:978-0-07-107782-8] (Units I - IV)
- 1. **Optical fiber and fiber optic communication systems**, S. K. Sarkar, 2007, S. Chand Publication. (Unit V)

Reference Books:

1.Electronic Communications, Sanjeeva Gupta, 2002, Khanna Publishers.

Category	Course Type	Course Code	('ourse'l'itle		Contact Hours	Credit		
III	Core : XXVI	21PHP25	Comprehens Physics – (MCQ from I courses / Onlir	IV Part-III	-	1		
	Contact hours per semester: - Contact hours per week: -							
Year	S	emester	Internal Marks	Externa Marks	· · · ·	Fotal Marks		
2021		III	-	100		100		
and to mot	ivate the stud	ents to comp completion	atter Physics and I rehend the concept of the course, the Durse Outcome	ts of the syl	labi.			
CO1	recollect the concepts, principle and formulae of the courses Thermodynamics and Statistical Mechanics , Condensed Matter Physics and Electronic Communication Systems					K1		
CO2	 Elaborate the Concepts like Lattice vibration, Crystal Defects Dielectrics, Ferroelectrics, superconductivity Magnetism Concepts of Thermodynamics , Radiation Statistical Physics, Classical Distribution law Quantum statistics and it's applications. 					K2		

	 Concepts of Antennas, wave Propogation, Microwave, Radar Systems, Communication Electronics and Optical Fibres 				
CO3	Apply the formulas and laws from Thermodynamics and Statistical Mechanics, condensed matter Physics , laws in optical fiber Technology	K3			
CO4	Examine and Analyze the concept of excitation, beam properties, electron theory of metals ,Bose Einstein , Fermi Dirac statistics, microwave generation, Antennas, Radar performance, frequency and phase modulation, fibre optics and it's application.	K4			
CO5	Assess the various Parameters in Thermodynamics and Statistical Mechanics , Condensed Matter Physics and Electronic Communication System	K5			
CO6	recollect the concepts, principle and formulae of the courses Thermodynamics and Statistical Mechanics , Condensed Matter Physics and Electronic Communication Systems	K6			
K1 – Remember;K2 – Understand;K3 – Apply;K4 – Analyze;K5 – Evaluate ; K6- Create					

PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	9	9	9	9	9	9	3	
CO2	9	9	9	9	3	3	3	
CO3	9	9	9	3	3	3	3	
CO4	9	3	3	1	1	3	3	
CO5	9	3	3	1	1	1	3	
CO6	9	3	1	0	0	0	1	
Total Contribution of COs to PSOs	54	36	34	23	17	19	16	
Weighted Percentage of COs Contribution								

to PSOs								
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;								
9- High correlation between COs and PSos								

Category	Course Type	Course Code	Course T	itle	Contact Hours	Credit
III	Core : XXVII	21PHP26	Project Work & Voce	Viva	50	4
	ours per sem ours per wee					
Year	Se	emester	Internal Marks	Extern Marks		otal Marks
2022		III	50 vide the student to	50		100
mportance o	of undergone	project.	lay to day life scer of the course, the			uie
Cos		C	ourse Outcome			Knowledge Level (RBT)
CO1	remember th		concerned project	and its ava	ulability	K1
CO2	-		at are interconnectonce, thin films, sol		ndividual	K2
CO3	seek differen on basis of p		chnique and creates	e innovative	e ideas	K3
CO4	explore the c project	causes and re	ason behind applie	ed technique	es of the	K4
CO5	evaluate the results made from the project and analyse the usage of project in daily life					K5
CO6	develop further more innovations in the existing project based on innovative ideas				K6	

K1 – Remember; K2 – Understand; K3 – Apply; K5 – Evaluate ; K6- Create

CO-PSO MAPPING (COURSE ARTICULATION MATRIX)

K4 – Analyze;

CO – PSO Mapping

L

				1			
PSOs Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	3	9
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	3	9	3	3	1
CO5	9	3	1	3	1	3	1
CO6	3	3	1	3	1	1	1
Total Contribution of COs to PSOs	48	42	32	42	20	16	18
Weighted Percentage of COs Contribution to PSOs							
Level of correl 9- High correla				low correla	ition; 3 – N	fedium cor	relation;

(i) Value-added Courses:

Course Code	9	Course Name	Category	L	T	Р	Credit
		MATERIAL SCIENCE	Value added				
reamble							
The a	im	of the objectives is to provide basi	c knowledge	and	ski	ll of	Material
cience.							
		SYLLABUS					
Unit		Course Content					truction Hours
Ι		Material Science– Propertie aterial – Selection of Materials oplications.	-		-		
п	Magnetic Materials Different types of Magnetic Materials –Diamagnetism and Paramagnetism – Ferromagnetism – Domain theory of ferromagnetism - Hard and Soft magnetic materials						
ш	Modern Engineering Materials Polymer – Ceramics – Super Strong Materials – Cermets– High temperature materials– Thermoelectric Materials– Electrets– Nuclear Engineering materials						
IV	New Materials Metallic glasses – Fiber reinforced plastics – Metal matrix composites – Optical Materials– Materials for optical sources and detectors– Fiber Optic materials and their applications						
V	Display Materials – Acoustic Materials and their applications– SAW materials– Biomaterials						
Text Boo							
1. Materia	als s	cience- M Arumugam, Anuradha age	encies				

References Books

1. Materials Science and Engineering - V. Raghavan, Prentice Hall of India,

Course Code	Course Name	Category	L	Т	Р	Credit
	PROBLEM SOLVING FOR NET/SLET	Value added				
Preamble						
The aim o	f the objectives is to provide basic skill	s to solve Prob	lems	on	Phys	ics.
	SYLLABU	8				
Unit	Course Conten	t				truction Hours
Ι	I VECTOR CALCULUS Product of vectors – Gradient – Divergence & Curl – Integration of vectors: Linear integration of vectors, Surface integration of vectors, Volume integration of vectors, Linear dependency of vectors, Orthogonal curvilinear co- ordinates.					
ш	II MATRICES Eigen values & Eigen vectors – Cayley-Hamilton theorem – Rank of a matrix – Diagonalisation of a matrix – Linear transformation – Applications.					
III	COMPLEX ANALYSIS Function of complex variables – Complex analytic function – Power series: Expansion of Complex function –					

	DIFFERENTIAL EQUATIONS				
IV	Differential equation of first order and first degree – Linear second order differential equation – Legendre differential				
	equation – Bessel differential equation – Hermite differential equation – Lagauerre differential equation.				
	TENSOR ANALYSIS				
v	Basic review of tensors – Algebra of tensors – Fundamental tensors – Chrystoffel symbols – Co-variant, contra-variant and mixed tensors.				
Text H	Books				
1)	1) Mathematical Physics (revised), H K Dass, S. Chand (2008), ISBN 8121914698, 9788121914697.				
2)	Mathematical Physics(revised), Satya Prakash, Sultan Chand & Sons (2014),				
	ISBN 8180549283, 978-8180549281				
Refere	ences Books				
	Mathematical Physics, Kalkani S.L - 3rd Edition 2009, ISBN 9789386478238.				
2)	Mathematical Physics, B.D Gupta- Vikas publishing house-4 th Edition 2009,				
	ISBN 8125930965, 9788125930969.				
3)	Mathematical Physics, Rajput B.S. – Pragati prakashan -23rd Edition-2011				
E-Ref	erence:				
1.	https://nptel.ac.in>courses				

c) Extra Credit Course(s):

Courses offered by the department for ADVANCED LEARNERS

Course Code	Course Name	Category	L	T	Р	Credit			
	ADVANCED INSTRUMENTATION								
	Course Objective: To provide the student's deeper knowledge of measured and errors occurred in different ways.								
	SYLLABU	3							
Unit	Unit Course Content								
I	Errors and Measurements Measurement, Instruments-static instruments, estimation of static e dynamic characteristics of instruments								
II	II Transducers Classifications of transducers-displacement measurement, strain measurement-stress strain relations, resistance strain gauges, Fibre – Optic strain gauges.								
ш	Pressure Measurements Definition- Pressure units and comparison with known dead weig devices, secondary transducers, vacuu	ns, ing							

	Temperature Measurements				
	Temperature scale, change in dimensions, electrical				
IV	properties, thermoelectricity, fibre-optic sensors, Quartz				
	thermometer, change in velocity of sound propagation,				
	radiation pyrometers, thermowells				
	Other forms of Measurements				
	Acceleration and force measurement, Tachometers, Torque				
v	measurement, flow measurement, level measurement,				
	signal conditioning, display devices and recording systems				
Text Boo	ks				
1. Introd	duction to Measurements and Instrumentation – Arun K Gosh	, 4 th Edition,			
2012, PH	I Learning Private Limited (Unit 1, 2, 3, 4 & 5)				

Course Code	Course Name	Category	L	Т	Р	Credit		
	ADVANCED QUANTUM MECHANICS	Core						
wave me symmetry	Course Objective: The aim is to make the students to understand the concepts of wave mechanics, Schrödinger equation, 1D and 3D energy eigen value problems symmetry and conservation laws and approximation methods and theories for the study of chemical bondings. SYLLABUS							
Unit	Course Content					truction Hours		
Ι	Wave Mechanical concepts: Wave the uncertainty principle – the principle wave packet – time-dependent schrifter interpretation of wave function – entime-independent schrodinger equation	le of superpos rodinger equa irenfest's the	sitior ation orem	1 — - -				

	admissibility conditions of the wave function	
II	One Dimensional Energy Eigen Value Problems: Square well potential with rigid walls - Square well potential with finite walls – square potential barrier – Alpha emission – Bloch waves in periodic potential – Kronig-Penney square- well periodic potential – linear harmonic oscillator: Schrodinger method and operator method.	
ш	Three Dimensional Energy Eigen Value Problems: Particle moving in a spherically symmetric potential – system of two interacting particles – rigid rotator – hydrogen atom – hydrogenic orbits – the free particle – three-dimensional square-well potential – the deuteron.	
IV	Symmetry and Conservation laws: Symmetry transformations- Translation in space: conservation of linear momentum - Translation in time: conservation of energy - Rotation in space: conservation of angular momentum – space inversion: parity conservation – time reversal.	
v	Chemical bonding: Born-Oppenheimer approximation – Molecular orbital method – MO treatment of hydrogen molecule ion – Electronic configuration of diatomic molecules – Valence bond method the valence bond treatment of H_2 .	
Text Boo	ks	
ur 2. <i>A</i>	<i>Quantum Mechanics,</i> G. Aruldhas, 2 nd Edition, 2009, PHI I hits) <i>dvanced Quantum Mechanics,</i> Satya Prakash, 2001, Kedar N b., Meerut.	
Referenc	e Books	
$\begin{array}{c c} 2. & \widetilde{Q} \\ & D \\ & D \end{array}$	uantum Mechanics, Leonard I. Schiff, 1968, Mc Graw-Hill Bo uantum Mechanics, V. Devanathan, 2005, Narosa Publishing elhi.	g House, New
	<i>textbook of Quantum Mechanics</i> , P.M. Mathews and Ven print 2002, Tata Mc Graw Hill publishing company Ltd., New 2	

Course Code	Course Name Category L T				Р	Credit			
	STATISTICAL MECHANICS								
	Course Objective: By undergoing the Statistical Mechanics, one should acquire deeper knowledge on Statistical Mechanics								
	SYLLABUS								
Unit	Course Conten	t				truction Hours			
I	The Fundamentals of Statistical Phy Objective of statistical me microstates, phase space and ensemb Density distribution in phase space Postulate of equal a priori probab ensemble average and time average- of entropy- Classical ideal gas- Entro paradox- Liouville's theorem								
Π	Theory of Ensembles Classification of ensemble Canonical and Grand canonical e function of canonical ensemble- quantities by partition function - e Helmholtz free energy- fluctuation chemical potential of ideal gas								
ш	mechanics- Density matrix- Enso statistical mechanics- Quantum Liouv law of distribution of velocities-	Quantum Statistics Introduction- Postulates of quantum statistical mechanics- Density matrix- Ensembles in Quantum statistical mechanics- Quantum Liouville theorem- Maxwell law of distribution of velocities- Ideal quantum gases- Bosons- Fermions- BE, FD, MB distributions using GCE							

IV	Approximate Methods Classical Cluster expansion- Quantum Cluster expansion- Virial equations of states, Ising model in one, two, three dimensions- exact solutions				
V	Phase Transitions Photon gas- Equation of state- Bose-Einstein condensation- Equation of state of ideal gas - Specific heat from lattice vibration- phase transitions- first and second order phase transitions critical points- Landau's theory- Phonon gas- Theory of Super fluidity- Liquid helium				
Text Boo 1. B.B. La Publishers	aud, Fundamentals of Statistical Mechanics, New Age Internation	onal			
2. Kersor	Huang, Statistical Mechanics, John Wiley & Sons.				
3. C. Kitte	el, Elementary Statistical Physics, John Wiley & Sons.				
4. R.P. Fe	ynman, Statistical Mechanics, Addison Wesley.				
5. R.K. Pathria, Statistical Physics, Pergamon, Oxford.					
6. F. Reif,	Statistical and Thermal Physics, McGraw Hill.				

Course Code	Course Name	Category	L	Т	Р	Credit	
	PLASMA PHYSICS						
Course Objective: The aim is to provide the students, understand the model plasma phenomena in the universe and explore the physical processes which occur in the space environment .							
SYLLABUS							

Unit	Course Content	Instructional Hours
Ι	Fundamental Concepts about Plasma Kinetic pressure in a partially ionized - mean free path and collision cross section- mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons - Thermal conductivity - Effect of magnetic field - Quasi neutrality of plasma - Debye shielding distance	10
II	Motion of Charged Particles in Electric and Magnetic Field Particle description of plasma – Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields - Motion of charged particle in inhomogeneous magnetic field- Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field	15
Ш	Plasma Oscillations and WavesIntroduction, theory of simple oscillations - electron oscillationin a plasma - Derivations of plasma oscillations by usingMaxwell's equation - Ion oscillation and waves in a magneticfield - thermal effects on plasma oscillations - Landau damping- Hydro magnetic waves - Oscillations in an electron beam	15
IV	Plasma Diagnostics Techniques Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic method - laser as a tool for plasma diagnostics – X ray diagnostics of plasma - acoustic method – conclusion	15

V	Applications of Plasma Physics Magneto hydrodynamic Generator - Basic theory - Principle of Working - Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma	15			
 Text Books Plasma Physics - Plasma State of Matter - S.N. Sen, Pragati Prakashan, Meerut Principles of Plasma Diagnostics - I. H. Hutchinson Introduction to Plasma Physics - F.F.Chen, Plenum Press, London Plasma Diagnostic Techniques - R.H. Huddlestone & S.L. Leonard 					